
Universal SIMD-Mathlibrary

Helmut Dersch
Furtwangen University of Applied Sciences

August 20, 2008

Abstract

Standard functions for single precision floating point vector datatypes
are provided for the SIMD-platforms x86 (SSE2), PowerPC and Cell. In
most cases, speed and/or accuracy compare favourable with existing SIMD-
libraries (MacOS Accelerate Framework, Cell SDK). Most of the algorithms
are based on those of the Cephes library, while the implementation is branch-
free and parallelized for minimum pipeline stalls. The Universal SIMD
Mathlibrary (usm) provides the functions sin, cos, tan, asin, acos, atan,
atan2, sqrt, exp, log, pow, abs, ceil, floor, ldexp, and frexp. It is licensed
under the GPL3.

Introduction
For general x86-linux I could not find a full implementation of the standard C
mathfunctions for floating point vectors, which I needed to port my fast panorama
stitcher and blender PTStitcherNG [1]. Originally developed for the Cellprocessor
of the Sony Playstation 3, I had added a port to MacOS. Both platforms provide
builtin support for SIMD-mathfunctions. To unify the codebase of my original
project, I wrote versions for all processors, which resulted in this library with a
common C-programming interface.

For a general introduction to SIMD see the entry in Wikipedia. This article
and software only deal with vectors consisting of four single precision floating
point numbers (4 ·32 bits = 128 bits). Execution time and accuracy do not depend
on the number of floating point elements in the vector; however, I am not aware
of existing platforms with more than 4.

1

Test Platforms
This article is aimed at prospective users so it starts with testresults. For the tests I
used all SIMD-capable computers available to me. They coincidentally cover the
supported platforms:

• Mac mini (Intel Core 2 Duo, SSE3, 1.83 GHz), MacOS 10.5.4

• Sony Playstation 3 (IBM Cell Processor, 3.2GHz), Yellow Dog Linux 6.

• Asus EeePC (Intel Celeron M, SSE2, 630MHz), Xandros Linux

In the following we compare a total of 11 SIMD-libraries running on these
platforms:

• Universal SIMD Mathlibrary (usm), compiled for the respective processor.

• Vector Library (mac) as part of the MacOS Accelerate Framework.

• Simdmath library as part of the Cell-Development Kit [3]. There are differ-
ent versions for Altivec instructions (ps3/ppu) and the synergestic process-
ing unit (ps3/spu).

• The standard scalar math library (libm) distributed with the respective op-
erating system. For each float-function func a vectorized version func4
has been compiled, which calculates the func-value of the four vector ele-
ments.

Test Results
Speed is measured by executing each function 106 to 107 times on equally spaced
values within the function dependend test range. See the source code for details
about the test method. In each case, non-inlined versions of the functions are
used. The results are provided as time-per-function-evaluation in nanoseconds.
Significantly faster (by more than 30%) results are marked in bold. The table
speaks for itself.

A few additional notes: the MacOS standard mathlibrary libm is quite fast,
and in some cases outperforms the vector libraries (pow and acos, emphasized in
the table). See the special note about the pow-function below.

Core 2 Duo Cell/PowerPC Cell/SPU Celeron M
usm mac libm usm ps3 libm usm ps3 libm usm libm

sin 31 45 74 56 60 905 30 43 143 134 750
cos 31 46 79 73 61 908 31 43 155 148 760
tan 38 68 105 73 134 786 40 59 206 197 1072
asin 36 37 59 61 131 750 39 49 347 155 1816
acos 62 67 57 121 137 822 57 62 402 275 1806
atan 27 40 87 41 45 488 25 34 166 169 1078
atan2 50 62 172 78 n/a 1142 43 n/a 242 289 1222
sqrt 10 10 56 19 20 39 19 34 27 70 495
exp 31 48 83 40 49 1220 36 52 195 155 1550
log 41 63 90 46 48 825 29 36 245 140 1094
pow 93/ 221 201 85 96 3337 61 53 255 346 2675

209

Table 1: Average time (in ns) to perform one SIMD-function execution. Bold
numbers mark significantly (difference ≥ 30%) better results for the respective
processor.

Relative errors are calculated by comparing the function results to the results
of the corresponding double precision functions, which are assumed to be exact.
Again, a large number of function evaluations in the specified testrange are gath-
ered and analyzed. Two types of relative errors are evaluated: Averaged over all
data (root-mean-square, RMS) and the maximum error (peak).

Floating point math accuracy is specified by the constant FLT EPSILON which
is defined as the smallest number satisfying the relation

1.0 f +FLT EPSILON > 1.0 f

This constant is 1.19209 ·10−7 for all tested platforms, and defines an upper limit
for the relative error of any floating point operation. For easy comparison all
results are normalized to this constant.

Starting with the average-(RMS)-error: Depending on the testrange, the the-
oretical optimum for a single precision floating point implementation of a con-
tineous function is typically around 0.2 (exceptions like constants etc excluded).
The standard mathlibrary of x86-linux (glibc) really shines here in providing this
optimum for all functions of the testsuite (see Celeron M/libm column). The libm-
results for MacOS and PPU are also close to the optimum, while the SPU-libm

Core 2 Duo Cell/PowerPC Cell/SPU Celeron M
usm mac libm usm ps3 libm usm ps3 libm usm libm

sin 0.24 0.24 0.22 0.27 1.58 0.22 0.57 1.33 1.33 0.24 0.19
cos 0.25 0.25 0.22 0.28 0.33 0.22 0.60 1.04 1.04 0.25 0.19
tan 0.35 0.38 0.22 0.35 0.47 0.22 0.68 0.66 0.66 0.35 0.21
asin 0.43 0.42 0.26 0.47 0.27 0.22 0.49 0.54 0.54 0.43 0.21
acos 0.34 0.34 0.27 0.37 0.54 0.23 0.31 0.36 0.36 0.34 0.22
atan 0.34 0.35 0.22 0.40 0.45 0.22 1.12 > 106 1.58 0.34 0.21
atan2 0.36 0.36 0.22 0.38 n/a 0.26 1.41 n/a 0.70 0.36 0.22
sqrt 0.20 0.20 0.20 0.31 1.00 0.20 0.38 0.40 0.26 0.20 0.20
exp 0.23 0.23 0.21 0.26 0.44 0.25 0.35 0.43 0.75 0.23 0.21
log 0.19 0.19 0.19 0.19 0.39 0.19 0.38 1.62 1.56 0.19 0.19
pow 0.42/ 0.30 0.21 0.46 0.57 0.24 1.35 1.09 1.09 0.42 0.21

0.30

Table 2: Average relative error (root-mean-square) of SIMD-functions in units
FLT EPSILON (1.19 ·10−7). Theoretical lower limit is approximately 0.2.

is much worse. Most of the functions here are duplicates of the respective vector
functions.

The vector libraries are generally less accurate. There is little difference be-
ween usm and the MacOS-vector library. The usm implemetation on X86-Linux
(Celeron) gives exactly the same results as the one on MacOS. On the PPU and
SPU there are some cases with missing (atan2) or buggy (atan) implementations
of standard functions in the builtin libraries, which are corrected by usm.

Peak relative error is also provided in units FLT EPSILON, see last paragraph.
Depending on the testrange, the theoretical optimum for a single precision floating
point implementation of a contineous function is typically 0.5 (exceptions like
constants etc excluded). As for the average error, the standard mathlibrary of
x86-linux (glibc) provides this optimum for all functions of the testsuite. The
libm-results for MacOS and PPU are both worse, while the SPU-libm is much
worse.

The results for the vector libraries are similar to the results discussed for the
average errors above.

Summing up the comparison: Compared with the Accelerate framework, the
usm is faster for almost all functions (often significantly) while providing similar
accuracy. Compared with the Cell-SDK functions, the usm is also faster in most

Core 2 Duo Cell/PowerPC Cell/SPU Celeron M
usm mac libm usm ps3 libm usm ps3 libm usm libm

sin 0.98 0.98 0.67 0.96 490 0.82 1.84 275 275 0.98 0.50
cos 0.94 0.94 0.65 1.07 4.25 0.82 1.85 57.0 57.0 0.94 0.50
tan 1.34 1.66 0.57 1.38 2.13 0.57 1.86 2.53 2.53 1.34 0.50
asin 2.23 2.33 0.76 2.92 1.77 0.79 2.50 1.78 1.78 2.23 0.50
acos 1.16 1.15 0.91 1.53 3.91 0.83 1.50 1.03 1.03 1.16 0.50
atan 1.61 1.77 0.63 1.50 1.94 0.66 2.61 > 106 3.07 1.61 0.50
atan2 1.77 2.23 0.63 1.70 n/a 1.00 3.61 n/a 2.77 1.77 0.50
sqrt 0.50 0.50 0.50 1.42 2.35 0.50 1.48 1.00 1.10 0.50 0.50
exp 0.60 0.60 0.50 1.00 2.13 0.50 1.03 1.03 2.75 0.60 0.50
log 0.64 0.64 0.49 0.73 56.2 0.64 1.87 102 63.1 0.64 0.49
pow 4.81/ 1.32 0.50 4.42 6.32 0.73 36.6 14.4 14.4 4.81 0.50

0.94

Table 3: Peak relative error of SIMD-functions in units FLT EPSILON (1.19 ·
10−7). Theoretical lower limit is approximately 0.5.

cases. The Cell-SDK functions exhibit a couple of serious errors (RMS-error:
atan; peak-error: sin, cos, atan, log) and deficiencies (atan2), which are corrected
in usm.

The results are also quite informative regarding platform comparisons. The
speed of the Core 2 Duo is very similar to that of the SPU with the exception of the
sqrt-function, which is an intrinsic on the SSE-platform. Accuracy is somewhat
better for the Core 2 Duo. The seemingly poor performance of the Celeron M
is in reality still quite impressive, and a few years ago would have qualified this
machine as a workstation.

The libm for PowerPC is very slow, and for some functions slower than the
Celeron M version, which are both supposedly based on the same glibc.

Usage
The Universal SIMD-Mathlibrary must be compiled with the GNU C-compiler,
version ≥ 4.0. Edit the Makefile and set the PROCESSOR-variable to one of
SSE (for all x86 platforms supporting at least the SSE2 instruction set, which
all current models do), PPU (for PowerPC and Cell/PPU supporting the Altivec

instruction set) or SPU for the Cell’s synergestic processing unit. Then type make.
A version of the library libsimdmath.a and two test programs test (for
the usm), and tlibm (for the standard math library libm) are created. On the
Macintosh platform you can create an additional testprogram for the builtin vector
library (tlibvecm) and on the Playstation 3 one for the Cell development kit
(tps3m), edit the Makefile correspondingly.

To use the library in your program, include the header file simdmath.h
and link to the library file libsimdmath.a. The header file defines the type
vec_float4 for all platforms. All function names are identical to their stan-
dard libmath-names, with the character 4 appended (eg sinf4 for the vector sine
function).

Inlined versions of all (and some additional) functions are accessible by in-
cluding the respective header files. The inline function names contain leading
underscores. E.g., to use an inlined version of sinf4, include the header file
sincosf4.h and use the function name _sinf4. A few useful additional func-
tions are available as inlined versions only: _sincosf4, which calculates sine
and cosine of the same argument together as fast as each of them individually, and
some alternative test versions of other functions.

Implementation
The base algorithms in most cases are those used in the Cephes [2] library, see the
sources for details. Basically, they all consist of three steps

• The argument is reduced into a suitable range with the help of some function
specific theorems.

• A Taylor-like approximating polynomial is applied, whose coefficients are
carefully optimized.

• The argument reduction step is reversed.

The algorithms are implemented in a branch-free manner and further opti-
mized.

Branches like

y = a ? f1 (x) : f2 (x) ;

are replaced by something similar to

y = a & f1 (x) | ˜ a & f2 (x) ;

This allows the same code to create several function values at once. The ap-
parent disadvantage of evaluating both cases (f1(x) and f2(x)) is more than offset
by the avoidance of pipeline stalls, which makes this version favourable also for
scalar functions.

The GNU C-compiler provides standard C-like operators for vector types (*,+,-,/),
and my original plan was to use these to build a portable C-like implementation,
and let the compiler create platform specific code. Unfortunately, this did not
work well. While a few missing C-operators (shift, comparison) can be easily
provided with C-macros, the differences in processors requires different optimiza-
tion strategies:

• The ppc and cell can not divide fast. Algorithms with quotients are avoided
or treated specially. A different algorithms for atan [4] had to be choosen
for these processors.

• ppc and cell processors stall when evaluating long Horner-polynomials:

y = (((a4∗x+a3)∗ x+a2)∗ x+a1)∗ x+a0 ;

Therefore, these are broken into quadratic factors:

y = ((c2∗x+c1)∗ x+c0) ∗ ((x+d1)∗ x+d0) ;

which can be calculated separately. This version is faster on the cell, but
slower on the x86 platform, so I had to provide separate versions. This also
explains part of the difference in accuracy.

• Creating vector constants on-the-fly is faster on the cell than loading from
memory, and vice-versa on sse-platforms.

Some functions (asin,acos) have not yet been optimized for ppu/spu.
Sqrt is an intrinsic on the SSE-platform, and thus reduces to a single instruc-

tion. The implementation for ppu/spu is based on the inverse-square-root estimate
intrinsic of these platforms. This instruction is combined with one iteration of the
Newton-Raphson algorithm to provide the final result.

The basic pow-function in usm calculates the formula

pow (x , y) = exp (l o g (x)∗ y) ;

with special treatment of the x=0 case. There is an alternative, more accurate pow-
function following the Cephes [2] algorithm, which can be accessed by undefining
FAST_POWF4 in the header file <powf4.h>. It is listed in the tables as second
entry for pow in the Core-2-Duo/usm column. It roughly provides the slightly
improved performance of the mac-pow function. But both are slower and less
accurate than the scalar libm-version. This slow (and normally disabled) pow-
function is the only usm-function which due to its complexity uses branches.

On the SPU it is not possible to specially treat the x=0 case in pow in a branch-
free manner. Therefor, all pow implementations (usm, ps3 and libm) create NaN
for x=0 on this platform.

The spu truncates results of floating point operations. Its theoretical and prac-
tical peak and RMS errors are therefor larger than for the other processors given
the same algorithm. In some cases these can be compensated in the algorithm:
The exp and sqrt implementations of usm are much simpler (and thus faster) than
the ps3 versions, but they provide the same (even somewhat lower) rms-error due
to rounding correction.

Behaviour of all functions outside their intended variable range is undefined.

References
[1] PTStitcherNG http://www.fh-furtwangen.de/˜dersch

[2] Cephes Math Library Release 2.2: June, 1992, by Stephen L. Moshier
http://www.netlib.org/cephes/

[3] Cell development kit from http://www-128.ibm.com/
developerworks/power/cell/

[4] B.Carlson, M.Goldstein, Los Alamos Scientific Laboratory 1955

http://www.fh-furtwangen.de/~dersch
http://www.netlib.org/cephes/
http://www-128.ibm.com/developerworks/power/cell/
http://www-128.ibm.com/developerworks/power/cell/

