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ABSTRACT. This brief report describes some recent developments of the R quantreg pack-
age to incorporate methods for additive models. The methods are illustrated with an
application to modeling childhood malnutrition in India.

Models with additive nonparametric effects offer a valuable dimension reduction device
throughout applied statistics. In this paper we describe some recent developments of addi-
tive models for quantile regression. These methods employ the total variation smoothing
penalties introduced in Koenker, Ng, and Portnoy (1994) for univariate components and
Koenker and Mizera (2004) for bivariate components. We focus on selection of smoothing
parameters including lasso-type selection of parametric components, and on post selection
inference methods.

Additive models have received considerable attention since their introduction by Hastie
and Tibshirani (1986, 1990).  They provide a pragmatic approach to nonparametric regres-
sion modeling; by restricting nonparametric components to be composed of low-dimensional
additive pieces we can circumvent some of the worst aspects of the notorious curse of di-
mensionality. It should be emphasized that we use the word “circumvent’ advisedly, in
full recognition that we have only swept difficulties under the rug by the assumption of
additivity. When conditions for additivity are violated there will obviously be a price to
pay.

1. ADDITIVE MODELS FOR QUANTILE REGRESSION

Our approach to additive models for quantile regression and especially our implementa-
tion of methods in R is heavily influenced by Wood (2006, 2009) . In some fundamental
respects the approaches are quite distinct: Gaussian likelihood is replaced by (Laplacean)
quantile fidelity, squared £5 norms as measures of the roughness of fitted functions are re-
placed by corresponding £ norms measuring total variation, and truncated basis expansions
are supplanted by sparse algebra as a computational expedient. But in other respects the
structure of the models is quite similar. We will consider models for conditional quantiles
of the general form:
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The nonparametric components 9 will be assumed to be continuous functions, either
univariate, R — R, or bivariate, R* — R. We will denote the vector of these functions
as g = (g1.-..,9,). Our task is to estimate these functions together with the Euclidean
parameter 3 € R, by solving

(2) mmZpT(y. —aiB+ Zg] zij)) + o || B |11 +Z)\ \/(VJ:

where || 8 1= Y_5_; |8k and \/(Vg;) denotes the total variation of the derivative or
gradient of the function g. Recall that for g with absolutely continuous derivative g’ we can
express the total variation of ¢ : R — R as

V) = [1o

while for g : R? — R with absolutely continuous gradient,

V) = [ 1956 11 a:

where V?g(z) denotes the Hessian of g, and || - || will denote the usual Hilbert-Schmidt
norm for matrices. As it happens, solutions to (2) are piecewise linear with knots at the
observed z; in the univariate case, and piecewise linear on a triangulation of the observed
z’s in the bivariate case. This greatly simplifies the computations required to solve (2),
which can now be written as a linear program with (typically) a very sparse constraint
matrix consisting mostly of zeros. This sparsity greatly facilitates efficient solution of the
resulting problem, as described in Koenker and Ng (2005). Such problems are efficiently
solved by modern interior point methods like those implemented in the quantreg package.

2. A MODEL OF CHILDHOOD MALNUTRITION IN INDIA

An application motivated by a recent paper by Fenske, Kneib, and Hothorn (2008) il-
lustrates the full range of the models described above. As part of a larger investigation
of malnutrition we are interested in determinants of children’s heights in India. The data
comes from Demographic and Health Surveys (DHS) conducted regularly in more than 75
countries. We have 37,623 observations on children between the ages of 0 and 6. We will
consider six covariates entering as additive nonparametric effects in addition to the response
variable height: the child’s age, and months of breastfeeding, the mother’s body mass index
(bmi), age and years of education, and the father’s years of education. Summary statistics
for these variables appear in Table 1 . There are also a large number of discrete covariates
that enter the model as parametric effects; these variables are also summarized in Table
1. In the terminology of R categorical variables are entered as factors, so a variable like
mother’s religion that has five distinct levels accounts for 4 model parameters.
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TABLE 1. Summary Statistics for the Response and Continuous Covariates

Variable
csex
male
female
ctwin
singlebirth
twin
chirthorder

W

5
mreligion

christian

hindu

muslim

other

sikh
mresidence

urban

rural
deadchildren

0

oo

Prior studies of malnutrition using data like the DHS have typi
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Ctab__ Units__Min__ QI Q2 Q3 Max
Chgt em 1500 73.60 81.10 93.20 120.00
Cage months  0.00 16.00 3100 45.00  59.00
Bfed months 0.00 9.00 1500 24.00 59.00
Mbmi kg/m? 1213 17.97 19.71 22.02 39.97
Mage years  13.00 21.00 2400 28.00 49.00
Medu years 000 0.00 500 9.00 21.00
Fedu years  0.00 200 800 10.00 22.00
Variable Counts_Percent
wealth
Counts poorest 6625 176
poorer 6858 182
19574 52.0 middle 7806 20.7
18049 480 richer 8446 224
richest 7888 210
37170 98.8 munemployed
453 1.2 unemployed 24002 638
employed 13621 362
11486 305 clectricity
10702 284 o 10426 27.7
6296 16.7 yes 27197 723
10.0 radio
14 o 25333 673
yes 12200 327
3805 101 television
26003 no 19414 516
6047 yes 18200 484
1071 refrigerator
7 no 31070 826
yes 6353 174
13965 bicycle
23658 no 19902 52.9
yes 17721 471
31236 83.0 ‘motorcycle
1640 123 no 30205 803
1196 3.2 yes 7418 197
551 15 car
no 36261 96.4
yes 1362 3.6

3

ally either focused on

mean height or transformed the response to binary form and analyzed the probability that
children fall below some conventional height cutoff. However, it seems more natural to try
to estimate models for some low conditional quantile of the height distribution. This is
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the approach adopted by FKH and the one we will employ here. It is also conventional
in prior studies including FKH, to replace the child’s height as response variable by a
standardized Z-score This variable is called “stunting” in the DHS data and it
just an age adjusted version of height with age-specific location and scale adj
our experience this preliminary adjustment is highly detrimental to the estimation of the
effects of interest so we have reverted to using height itself as a response variable.

In R specification of the model to be estimated is given by

£ <- rqss(Chgt™ gss(Cage,lambda = 20) + gss(Mage, lambda = 80) +
gss(Bfed,lambda = 80) + gss(Mbmi, lambda = 80) +
gss(Medu, lambda = 80) + gss(Fedu, lambda = 80) +
nunemployed + csex + ctwin + cbirthorder + mreligion +
mresidence + deadchildren + wealth + electricity + radio +
television + refrigerator + bicycle + motorcycle + car, tau = .10,
method = "lasso", lambda = 40, data = india)

The formula given as the first argument specifies each of the six non-parametric “smooth”
terms. Tn the present instance each of these is univariate, each requires specification of a A
determining its degree of smoothness. The remaining terms in the formula are specified as is
conventional in other R linear model fitting functions like Im( ) and rq( ). The argument
tau specifies the quantile of interest and data specifies the dataframe within which all of
the formula variables are defined.

2.1. A-Selection. A challenging task for any regularization problem like (2) is the choice of
the A parameters. Since we have 7 of these the problem is especially daunting. Following the
suggestion originally appearing in Koenker, Ng and Portnoy we relied upon the SIC-type
criterion

SIC(A) = nloga(A) + 3p()) log(n)
where 6(A) = n~' Y pr(yi — §(x, 2)), and p(A) is the effective dimension of the fitted
model

J
§w,2) =a'B+ Y 9;(2)-
F

The quantity p(A) is usually defined for linear least-squares estimators as the trace of a
pseudo projection matrix. The situation is somewhat similar for quantile regression fitting
except that we simply compute the number of zero residuals for the fitted model to obtain
p(A). Recall that in unpenalized quantile regression fitting a p-parameter model yields
precisely p zero residuals provided that the y;’s are in general position. This definition
of p(A) can be viewed from a more unified perspective as consistent with the definition
proposed by Meyer and Woodroofe (2000),

n
s g (i,

PO = div(g) = 3 =5

i=1

see Koenker (2005, p.243). A consequence of this approach to characterizing model

dimension is that it is necessary to avoid “tied” responses; we ensure this by “dithering”

the response variable. Heights measured to the nearest millimeter are replaced by randomly
perturbed values by adding uniformly distributed “noise” U[—0.05,0.05].
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Optimizing SIC(\) over A € R”. is still a difficult task made more challenging by the
fact that the objective is discontinuous at points where new constraints become binding
and previously free parameters vanish. The prudent strategy would seem to be to explore
informally, trying to narrow the region of optimization and then resort to some form of
global optimizer to narrow the selection. Initial exploration was conducted by considering
all of the continuous covariate effects excluding the child’s age as a group, and examining
one dimensional grids for X's for this group, for the child’s age, and the lasso A individually.
This procedure produced rough starting values for the following simulated annealing safari:

set.seed(1917)
malnu <- cbind(india, dChgt = dither(india$Chgt))

sic <- function(lam){

a <= AIC(rgss(dChgt~csex+qss(cage,lambda=lam[1])+
qss (mbmi , lambda=1am[2])+ qss(Bfed,lambda=1lam[3])+
qss (Mage, lambda=1am[4])+ gss(Medu,lambda=lam[5])+ qss(Fedu,lambda=lam[6])+
csex + ctwin+cbirthorder+ munemployed+mreligion+mresidence +
wealth+electricity+radio+television+refrigerator+bicycle+motorcycle+car,
tau=0.1, method="lasso", lambda=lam[7], data=malnu), k=-1)

print(c(lam,a))

a

}

g <- optim(c(20,80,80,80,80,80,20),sic,method="SANN",control=list (maxit=1000,

temp=5000, trace=10,REPORT=1))

Each function evaluation takes about 7 seconds, so 1000 steps of the simulated annealing
algorithm required about two hours. The “solution” yielded:

[1] 16.34189 67.92552 78.49549 85.05942 77.81752 82.51737 17.63161
$value
[1] 245034.0

Thus, the original starting values seem to be somewhat vindicated. We would not claim
that the “solutions” produced by this procedure are anything but rough approximations.
However, in our experience choosing A’s anywhere in a moderately large neighborhood of
this solution obtained this way yield quite similar inferential results we will now describ

2.2. Ci 1 Bands and Post-Selection Inference. Confidence bands for nonpara-
metric regression introduce some new challenges. As with any shrinkage type estimation
method there are immediate questions of bias. How do we ensure that the bands are cen-
tered properly? Bayesian interpretation of the bands as pioneered by Wahba (1983) and
Nychka (1983) provide some shelter from these doubts. For our additive quantile regression
models we have adopted a variant of the Nychka approach as implemented by Wood in the
mgev package.

As in any quantile regression inference problem we need to account for potential hetero-
geneity of the conditional density of the response. We do this by adopting Powell’s (1991)
proposal to estimate local conditional densities with a simple Gaussian kernel method.
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The pseudo design matrix incorporating both the lasso and total variation smoothing
penalties can be written as,

X Gy Gy

XoHr 0 - 0

T=| o nm o 0
0 0 NP

Here X denotes the matrix representing the parametric covariate effects, the G;’s represent

the basis expansion of the g; functions, Hx = [0:k] is the penalty contributions from the
lasso excluding any penalty on the intercept and the P; terms represent the contribution
from the penalty terms on each of the smoothed components. The covariance matrix for
the full set of parameters, 6 = (ﬂT.w;r.~ B .'};)T is given by the sandwich formula,

V=r(1l-7)(X X)X X)X Tux)!
where U denotes a diagonal matrix with the first n elements given by the local density
estimates,

fi=é(@/h)/h

; is the ith residual from the fitted model, and h is a bandwidth determined by one the
usual built-in rules. The remaining elements of the ¥ diagonal corresponding to the penalty
terms are set to one.

Pointwise confidence bands can be easily constructed given this matrix V. A matrix D
representing the prediction of g; at some specified plotting points z;j : § = 1,--- ,m is first
made, then we extract the corresponding chunk of the matrix V, and compute the estimated
covariance matrix of of the vector Df. Finally, we extract the square root of the diagonal of
this matrix. The only slight complication of this strategy is to remember that the intercept
should be appended to each such prediction and properly accounted for in the extraction
of the covariance matrix of the predictions.

To illustrate the use of these confidence bands, Figure 1 shows the six estimated smoothed
covariate effects and the associated confidence bands. This plot is produced by refitting the
model with the selected \’s, calling the fitted model object £it and then using the command
plot(fit, bands = TRUE, page = 1)

Clearly the effect of age and the associated growth curve is quite precisely estimated,
but the remaining effects show considerably more uncertainty. Mother’s BMI has a positive
effect up to about 30 and declines after that, similarly breastfeeding is advantageous up
until about 30 months, and then declines somewhat. (Breastfeeding after 36 months is
apparently quite common in India as revealed by the DHS survey.)

What about inference on the parametric components of the model? We would certainly
like to have some way to evaluate the “significance” of the remaining parametric coefficients
in the model. Again bias effects due to shrinkage create some serious doubts, from a strict
frequentist viewpoint these doubts may be difficult to push aside. See for example the
recent work of Pétscher and Leeb (2009). However, a Bayesian viewpoint may again rescue
the naive application of the covariance matrix estimate discussed above. When we employ
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FIGURE 1. Smooth covariate effects on children’s heights with pointwise confidence bands.

this covariance matrix to evaluate the parametric component of the model, we obtain the
following table from R using the usual summary (£it) command.
Parametric coefficients:

Estimate Std. Error t value Pr(>Itl)

(Intercept) 4.336e+01 5.753e-01  75.382 < 2e-16 *xx
csexfemale -1.405e+00 4.516e-02 -31.110 < 2e-16 ***
ctwintwin -6.550e-01 2.504e-02 -26.157 < 2e-16 ***
cbirthorder2 -6.492e-01 4.411e-02 -14.719 < 2e-16 **x*
cbirthorder3 -9.491e-01 4.246e-02 -22.355 < 2e-16 *x*
cbirthorder4 -1.437e+00 4.013e-02 -35.807 < 2e-16 ***
cbirthorder5 -2.140e+00 3.975e-02 -53.837 < 2e-16 ***
munemployedemployed .763e-02 4.453e-02 2.190 0.028532 *
mreligionhindu -2.111e-01 4.185e-02  -5.043 4.61e-07 *%*
mreligionmuslim -1.957e-01 3.991e-02  -4.904 9.42e-07 ***
mreligionother -3.934e-01 3.005e-02 -13.090 < 2e-16 ***
mreligionsikh -2.353e-13 2.766e-02 -8.5e-12 1.000000
mresidencerural 1.465e-01 4.357e-02 3.363 0.000773 *¥*
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wealthpoorer 2.126e-01 4.374e-02 4.861 1.17e-06 ***
wealthmiddle 5.880e-01 4.230e-02 13.899 < 2e-16 ***
wealthricher 8.368e-01 3.999e-02  20.924 < 2e-16 **x*
wealthrichest 1.358e+00 3.540e-02 38.367 < 2e-16 *x*
electricityyes 2.414e-01 4.345e-02 5.566 2.78e-08 ***
radioyes 4.073e-02 4.530e-02 0.899 0.368547

televisionyes 1.793e-01 4.378e-02 4.096 4.21e-05 ***
refrigeratoryes 1.289e-01 3.969e-02 3.247 0.001168 **
bicycleyes 3.940e-01 4.489e-02 8.778 < 2e-16 ***
motorcycleyes 1.764e-01 4.193e-02 4.207 2.60e-05 ***
caryes 3.633e-01 3.214e-02  11.303 < 2e-16 **x*

There are a number of peculiar aspects to this table. Somewhat surprisingly, our “opti-
mal” choice of the lasso A of 17.63 only zeros out one coefficient — the effect of the relatively
small minority of sikhs. For all the remaining coefficients the effect of the lasso shrinkage
is to push coefficients toward zero, but also to reduce their standard errors. The implicit
prior represented by the lasso penalty acts as data angmentation that improves the appar-
ent precision of the estimates. Whether this should be regarded as a Good Thing is really
questionable. To contrast the conclusions drawn from this table with somewhat more con-
ventional methods, we have reestimated the model maintaining the smoothing X’s at their
“optimized” values, but setting the lasso A to zero.

Parametric coefficients:
Estimate Std. Error t value Pr(>It|)

(Intercept) 43.51139 0.64391 67.574 < 2e-16 #¥x
csexfemale -1.44232 0.08421 -17.128 < 2e-16 ***
ctwintwin -0.86987 0.34680 -2.508 0.01214 *
cbirthorder2 -0.76125 0.10883 -6.995 2.70e-12 **x*
cbirthorder3 -1.13288 0.14098 -8.036 8.88e-16 ***
cbirthorder4 -1.60645 0.18238 -8.808 < 2e-16 #¥x
cbirthorders -2.34391 0.20206 -11.600 < 2e-16 ***
munemployedemployed 0.09254 0.09348  0.990 0.32221
mreligionhindu -0.42625 0.15390 -2.770 0.00561 **
mreligionmuslim -0.50185 0.18902 -2.655 0.00793 #**
mreligionother -0.76162 0.25700 -2.963 0.00304 **
mreligionsikh -0.39472 0.39786 -0.992 0.32114
mresidencerural 0.23299 0.10362  2.248 0.02456 *
wealthpoorer 0.45847 0.15372  2.982 0.00286 **
wealthmiddle 0.89591 0.17073  5.248 1.55e-07 #**
wealthricher 1.23945 0.20023  6.190 6.07e-10 ***
wealthrichest 1.83644 0.25340  7.247 4.33e-13 **x
electricityyes 0.14807 0.13215  1.120 0.26253
radioyes 0.01751 0.09701  0.180 0.85679
televisionyes 0.16862 0.12103 1.393 0.16359
refrigeratoryes 0.15100 0.14808  1.020 0.30787
bicycleyes 0.42391 0.08897  4.764 1.90e-06 **x*
motorcycleyes 0.20167 0.13193  1.529 0.12637
caryes 0.49681 0.23161  2.145 0.03196 *



ADDITIVE MODELS FOR QUANTILE REGRESSION: SOME NEW METHODS FOR R 9

This table is obviously quite different: coeffici are larger in absolute value
and more importantly standard errors are also somewhat larger. The net effect of removing
the lasso “prior” is that many of the coefficients that looked “significant” in the previous
version of the table are now of doubtful impact. Since we regard the lasso penalty more
as an expedient model selection device rather than an accurate reflection of informed prior
opinion, the latter table seems to offer a more prudent assessment of the effects of the
parametric contribution to the model. A natural question would be: does the refitted
model produce different plots of the smooth covariate effects? Fortunately, the answer
is no, replotting Figure 1 with the unlasso’d parametric fit yields a figure that is almost
indistinguishable from the orginal.

Most of the estimated parametric effects are unsurprising: girls are shorter than boys
even at the 10th percentile of heights, children later in the birth order tend to be shorter,
mother’s who are employed and wealthier have taller children, religious differences are very
small, and some household capital stock variables have a weak positive effect on heights,
even after the categorical wealth variable is accounted for.

The summary (fit) command also produces F-tests of the joint significance of the non-
parametric components, but we will defer the details of these calculations. A further issue
regarding these nonparametric components would be the transition from the pointwise con-
fidence bands that we have described above to uniform bands. This topic has received
quite a lot of attention in recent years, although the early work of Hotelling (1939) has
been crucial. Recent work by Krivobokova, Kneib, and Claeskens (2009) has shown how
to adapt the Hotelling approach for the some GAM models in the Wood mgev package. It
appears that similar methods can be adapted to rgss fitting; I hope to report on this in
future work.
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