
FuzzyLite v1.03
A Fuzzy Inference System written in C++

by Juan Rada-Vilela
Supported by the Foundation for the Advancement of Soft Computing

September, 2010

Contents

1 Overview 5
1.1 Introduction . 5
1.2 Features . 5
1.3 What’s new? . 6

1.3.1 FuzzyLite v1.03 . 6
1.3.2 FuzzyLite v.1.02 . 6
1.3.3 FuzzyLite v.1.01 . 6
1.3.4 FuzzyLite v1.0 . 6

1.4 What’s next? . 7
1.5 Known bugs . 7
1.6 Building from source . 7

1.6.1 FuzzyLite v1.03 . 7
1.6.2 FuzzyLite v.1.01 . 7
1.6.3 Graphic User Interface . 8
1.6.4 Requirements . 8
1.6.5 FuzzyLite v1.03 . 8
1.6.6 FuzzyLite v.1.01 . 8

1.7 Acknowledgements . 8

2 The Model 9
2.1 Fuzzy operations . 9

2.1.1 FuzzyOperator . 11
2.1.2 FuzzyOperation . 11
2.1.3 FuzzyDefuzzifier . 11
2.1.4 AreaAndCentroidAlgorithm . 11

2.2 Linguistic variables and terms . 11
2.2.1 LinguisticVariable . 13
2.2.2 LinguisticTerm . 13

2.3 Fuzzy rules . 13
2.3.1 FuzzyRule . 16

FuzzyAntecedent and FuzzyConsequent 16
DescriptiveAntecedent . 16
Hedge . 16
MamdaniRule and TakagiSugenoRule 16
MamdaniConsequent and TakagiSugenoConsequent 16

2.4 Fuzzy engine . 17
2.5 Fuzzy exceptions . 19

2

CONTENTS 3

3 Examples 20
3.1 Example #1: Basic FIS . 20
3.2 Example #2: 3D Pole Balancing . 21
3.3 Example 3: Approximating a function . 23

Appendix 26
GUI Setup . 26
GUI Test . 27
License of FuzzyLite v1.03 . 28

List of Figures

2.1 Class diagram: Fuzzy operations . 10
2.2 Class diagram: Linguistic variables and terms . 12
2.3 Linguistic Terms . 14
2.4 Class diagram: Fuzzy rules . 15
2.5 Class diagram: Hedges . 17
2.6 Class diagram: Fuzzy engine . 18
2.7 Class diagram: Fuzzy exceptions . 19

4

Chapter 1

Overview

1.1 Introduction

FuzzyLite v1.03 is a multiplatform, free, and open-source Fuzzy Inference System (FIS)
written in C++ and released under the Apache License 2.0, which makes this software freely
available for commercial and non-commercial use. The idea behind this FIS is to have a very
simple and lite FIS. Simple as in simple to use, simple to understand, and simple to extend,
without sacrificing performance. And lite because it requires no additional libraries more than
the Standard Template Library included in the C++ Standard Library. It has an object-oriented
approach and a clear separation between the headers and sources, so it is easy to extend. Fur-
thermore, it is GUI-agnostic, meaning that the FIS does not require a GUI to run, encouraging
its use as a library. Nevertheless, a Qt-based GUI is provided using FuzzyLite v1.03 as a
shared library.

1.2 Features

• Linguistic terms are continuous and the following ones are available: triangular, trape-
zoidal, rectangular, shoulder, singleton, custom function, and compound (multiple func-
tions).

• Export any fuzzy system to text using a slightly modified version of the Fuzzy Controller
Language (FCL).

• Defuzzification using center of gravity (COG).

• Mamdani rule parsing with grammar checking.

• Takagi Sugeno rules of any order (e.g. f(x) = (sin x) / x, f(x) = 0.5 * input-1).

• Weights for each rule.

• TNorm: minimum, product, bounded difference.

• SNorm: maximum, sum, bounded sum.

• Modulation: clipping, scaling.

• Aggregation: maximum, sum, bounded sum.

• Variable sampling size for membership functions to compute area and centroid.

• Triangulation and Trapezoidal algorithms to compute the area and centroid.

5

1.3. WHAT’S NEW? CHAPTER 1. OVERVIEW

• Hedges: not, somewhat, very, any.

• Very easy to implement and incorporate new linguistic terms, defuzzification methods,
fuzzy rules (antecedents and consequents), fuzzy operations (T-Norms, S-Norms, meth-
ods for modulation and aggregation), algorithms for computing the area and centroid of
linguistic terms, hedges, among other things.

1.3 What’s new?

1.3.1 FuzzyLite v1.03

• Fixed makefiles of libraries to remove the main.h and main.cpp files from building in
order to avoid problems at building time.

• Fixed two bugs courtesy of arash.abghari. One bug in FuzzyOperator.cpp, and an-
other one in CompoundTerm.cpp.

1.3.2 FuzzyLite v.1.02

• Fixed the Triangulation Algorithm to include the first and last triangle (improved accu-
racy). Courtesy of rctaylor.

• Implemented the Trapezoidal Algorithm suggested by WHRoeder, and used as default
now.

• Created the scripts for building fuzzylite as static and dynamic library, as well as building
a demo version of it. Tested on Linux Ubuntu and Mac OS X 10.5. Although the Unix
version should work under Windows as well using G++.

• Added LeftShoulderTerm and RightShoulderTerm, just to provide a better understand-
ing when configuring the FuzzyEngine.

• Changed all the #include <fuzzylite/?.h> for ‘‘ fuzzylite/?.h’’.

• Included the Trapezoidal Algorithm into the GUI.

1.3.3 FuzzyLite v.1.01

• The source can be built on Linux with no need to add several includes to some files. (I
work on MacOSX and I did not build fuzzylite on Linux, I just assumed it would build
just fine, but some includes were missing in some files. This was FIXED).

• Several scripts for building fuzzylite using a simple make. These scripts are created
automatically by NetBeans, however, you do not need NetBeans to build fuzzylite nor
the gui. The scripts are available for Linux and Mac OS X.

1.3.4 FuzzyLite v1.0

• The GUI is working again.

• A class diagram of FuzzyLite v1.03.

• A detailed explanation of FuzzyLite v1.03.

• Minor changes.

6 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 1. OVERVIEW 1.4. WHAT’S NEXT?

1.4 What’s next?

• Fix the GUI so Takagi Sugeno rules can be tested with their respective graph.

• Improve the InfixToPostfix class so infix functions are parsed as one would normally
expect.

• Load the fuzzy engine from text using the Fuzzy Controller Language (FCL).

• Include more linguistic terms (e.g. sigmoidal, gaussian, sine, cosine).

• Include more defuzzifiers (e.g. Right Most Maximum, Left Most Maximum, Mean Max-
imum).

• Make some functions inline to increase performance and check those that are already
inline to ensure they do increase performance.

1.5 Known bugs

• InfixToPostfix conversion might not parse functions as one would normally expect.
For example, sin(x)/x is not equivalent to (sinx)/x, the latter yields the result one might
expect. Make sure by validating the postfix expression, or by evaluating its results.

• In the GUI, when using a Takagi Sugeno system, the output graphs do not work.

1.6 Building from source

1.6.1 FuzzyLite v1.03

Inside ./fuzzylite there are 6 folders, on each there is a makefile. So all you have to do
is execute from the folder the command make. The folders are described below (notice that
[OS] stands for the operating system).

• [OS]-demo: Builds a demo version of fuzzylitewhich can be executed later as ./fuzzylite.
It shows the results for four examples of Fuzzy Engines.

• [OS]-static: Builds the library as a static library (fuzzylite.a).

• [OS]-shared: Builds the library as a dynamic library (fuzzylite.so (unix) or fuzzylite.dylib
(mac)).

This is a huge improvement from those really nasty NetBeans scripts. These scripts were
automatically created by Eclipse.

1.6.2 FuzzyLite v.1.01

Version 1.01 contains the following files linux-Makefile and macosx-Makefile, and the
following folders linux-nbproject and macosx-nbproject. Depending on your plat-
form, you must rename them by removing the name of the platform, so the new names are
Makefile and nbproject respectively. This should work, otherwise, follow the steps below.

1. Create a C++ Project either in Eclipse IDE or Netbeans IDE.

2. Add all the source files and include files to the project.

3. Add . to the includes path in the project properties.

7 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

1.7. ACKNOWLEDGEMENTS CHAPTER 1. OVERVIEW

4. Add the directive -DFL USE LOG to enable the use of logging via FL LOG(message).
In ./include/defs.h there are more symbols that can be defined via -D for further
customization.

5. Decide whether to build a library or an executable (in project properties).

6. Use the IDE’s normal build.

1.6.3 Graphic User Interface

1.6.4 Requirements

• Qt which can be freely downloaded from http://qt.nokia.com/.

1.6.5 FuzzyLite v1.03

In order to build this version, all you need to do (aside from having installed Qt which can
be freely downloaded from http://qt.nokia.com/.) is execute from ./fuzzylite/ the
command qmake. This will create a Makefile. Then, run make and it should start building the
GUI. Notice that in gui.pro it links to the unix version of fuzzylite static library using
relative path, so be sure to build such library first. If it is not unix what you need, perform
your changes accordingly.

1.6.6 FuzzyLite v.1.01

In order to build the graphical user interface of FuzzyLite v1.03, it is necessary to first
install Qt which can be freely downloaded from http://qt.nokia.com/.

The Makefile included within the ./gui is quite easy to read. Basically, the most impor-
tant thing here is to copy the libfuzzylite.dylib (or whatever the extension be accord-
ing to your platform) into the folder ./gui/dist which is where the executable will be put.
An alternative is to copy the library into /usr/local/lib and comment those lines in the
Makefile that build and copy the library into the ./gui/dist directory.

After configuring the Makefile to fit your system, a make all from ./gui would build
the graphical user interface of FuzzyLite v1.03. To run, it suffices to execute ./gui from
./gui/dist.

1.7 Acknowledgements

This work was possible thanks to the Foundation for the Advancement of Soft Computing, to
the Master of Soft Computing and Intelligent Data Analysis, and especially to Sergio Guadar-
rama and Luis Magdalena.

8 http://code.google.com/p/fuzzy-lite/

http://qt.nokia.com/
http://qt.nokia.com/
http://qt.nokia.com/
http://code.google.com/p/fuzzy-lite/

Chapter 2

The Model

This chapter is devoted to explain FuzzyLite v1.03 by means of a class diagram based on
UML. For a better comprehension, it is divided in five groups: Fuzzy operations, Linguistic
variables and terms, Linguistic terms, Fuzzy rules, Fuzzy engine, and Fuzzy exceptions. It is
important to mention that all classes related to FuzzyLite v1.03 are inside the namespace
fl.

2.1 Fuzzy operations

Figure 2.1 shows the class diagram for this group. The classes that can be seen in it are briefly
explained in the following sections.

9

2.1. FUZZY OPERATIONS CHAPTER 2. THE MODEL

Fi
gu

re
2.

1:
C

la
ss

di
ag

ra
m

:F
uz

zy
op

er
at

io
ns

10 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 2. THE MODEL 2.2. LINGUISTIC VARIABLES AND TERMS

2.1.1 FuzzyOperator

FuzzyOperator centralizes all the operations that can be performed in the fuzzy system. It
contains the type of T-Norms, S-Norms, modulation, aggregation, defuzzification methods,
algorithms for computing the area and centroid of any linguistic term, and the number of
samples that are drawn from any linguistic term to be used by the algorithm.

This class has an static default FuzzyOperator instance that can be obtained using the
method fl::FuzzyOperator::DefaultFuzzyOperator() anywhere and anytime. The
defaults for this operator are the following

• T-Norm: FuzzyAndMin.
• S-Norm: FuzzyOrMax.
• Modulation: FuzzyModClip.
• Aggregation: FuzzyOrMax.

• Defuzzifier: CoGDefuzzifier.
• Algorithm: TriangulationAlgorithm.
• Number of samples: 100.

These defaults may be changed at any moment from anywhere, but consider that this is an
instance that is shared among all instances from many classes, so be careful about changing
these values. Nevertheless, if you need to, you may use different instances among all those
classes composed by FuzzyOperator.

2.1.2 FuzzyOperation

This is the interface shared by all T-Norms, S-Norms, and methods for modulation and aggre-
gation. If you want to implement your own operations, you may do so by implementing this
interface. The operations included in FuzzyLite v1.03 are:

• T-Norm: minimum (FuzzyAndMin), product (FuzzyAndProd), and bounded difference
(FuzzyAndBDiff).

• S-Norm: maximum (FuzzyOrMax), sum (FuzzyOrSum), bounded sum (FuzzyOrBSum).

• Modulation: clipping (FuzzyModClip), scaling (FuzzyModScale).

• Aggregation: maximum (FuzzyOrMax), sum (FuzzyOrSum), bounded sum (FuzzyOrBSum).

2.1.3 FuzzyDefuzzifier

This is the interface shared by all defuzzifiers. If you want to implement a different defuzzi-
fier, you may do so by implementing this interface. The defuzzifiers included in FuzzyLite
v1.03 are: Centre of Gravity (CoGDefuzzifier) for Mamdani rules, and TakagiSugenoDefuzzifier
for Takagi-Sugeno rules.

2.1.4 AreaAndCentroidAlgorithm

This is an interface used for computing the area and centroid of linguistic terms. The algo-
rithms included in FuzzyLite v1.03 are: TriangulationAlgorithm which is a triangu-
lation algorithm appropriate for terms that can be easily triangulated, and IntegrationAlgorithm
which is a regular integration algorithm. The algorithm should be chosen according to the
shape of the fuzzy partitions. You may also create your own algorithm by implementing this
interface.

2.2 Linguistic variables and terms

Figure 2.2 shows the class diagram for the linguistic variables and terms included in FuzzyLite
v1.03.

11 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

2.2. LINGUISTIC VARIABLES AND TERMS CHAPTER 2. THE MODEL

Fi
gu

re
2.

2:
C

la
ss

di
ag

ra
m

:L
in

gu
is

ti
c

va
ri

ab
le

s
an

d
te

rm
s

12 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 2. THE MODEL 2.3. FUZZY RULES

2.2.1 LinguisticVariable

Linguistic variables are composed of a vector of LinguisticTerms. This is an abstract class
that is used as base for input variables (InputLVar) and output variables (OutputLVar).
Each input variable has an input value that should be the input received by the system, and
each output variable has a compound linguistic term composed by all the linguistic terms
added by the activation of the different rules given the input values of the input variables and
their respective processing.

2.2.2 LinguisticTerm

Linguistic terms, also known as fuzzy partitions, define the shape of each label. Each linguistic
term has a minimum and maximum that are used to define the limits of the area it covers.
Several linguistic terms are included in FuzzyLite v1.03:

• TriangularTerm: is the well known triangular term, it is defined by its three vertices
a, b, and c, where a and c are wrappers of minimum() and maximum(), respectively.

• RectangularTerm: is a simple rectangular term delimited by the minimum and maxi-
mum of its parent class LinguisticTerm.

• TrapezoidalTerm: defines a trapezoid by its four vertices a, b, c, and d, where a and d
are wrappers of minimum() and maximum(), respectively.

• SingletonTerm: defines a singleton for the value v delimited by v − δlow and v + δhi
where δlow and δhi are very small values in order to be able to create samples of this term.

• ShoulderTerm: defines a trapezoid that extends to ±∞ depending on whether it is left
(−∞) or right (+∞).

• DiscreteTerm: is a term composed of a vector of (x, y) coordinates. It is important
to note that when sampling this type of term, the result of membership(flScalar
crisp) is the value of y for the closest x given the value of crisp.

• FunctionTerm: is a term that is defined as a function f(x) which accepts several mathe-
matical and trigonometrical operations over a given function, for example: setInfixFunction(
"(sin x) / x"). It is very important to remark that the parser used to parse infix
functions may not function as expected (e.g. sin(x)/x is different of (sinx)/x, the latter
one gives the result one expects). When in doubt, test your expression by converting it
to postfix.

• CompoundTerm: is a term composed of a list of LinguisticTerms. This is used in
OutputLVar in order to aggregate all the linguistic terms that were added by the acti-
vation of rules, but it may be used as well to create more complex partitions.

• TakagiSugenoTerm: is a term used when dealing with TakagiSugenoRules, it ex-
tends from SingletonTerm so it has a value, and it includes a weight as well, both
necessary for this kind of system.

Finally, figure 2.3 shows examples of the linguistic terms, obtained by printing the window
from the GUI developed for FuzzyLite v1.03.

2.3 Fuzzy rules

Figure 2.4 shows the class diagram for fuzzy rules and all its related classes included in FuzzyLite
v1.03.

13 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

2.3. FUZZY RULES CHAPTER 2. THE MODEL

(a) TriangularTerm (b) RectangularTerm (c) TrapezoidalTerm

(d) SingletonTerm (e) ShoulderTerm (left) (f) ShoulderTerm (right)

(g) FunctionTerm (h) Triangular partitions (i) Triangular + Shoulder
partitions

Figure 2.3: Linguistic Terms

14 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 2. THE MODEL 2.3. FUZZY RULES

Fi
gu

re
2.

4:
C

la
ss

di
ag

ra
m

:F
uz

zy
ru

le
s

15 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

2.3. FUZZY RULES CHAPTER 2. THE MODEL

2.3.1 FuzzyRule

This abstract class is the base for MamdaniRules and TakagiSugenoRules. It is composed
by an antecedent (FuzzyAntecedent) and a list of consequents (FuzzyConsequents). There
are two methods that are worth mentioning here: firingStrength() which determines the
activation degree of the rule given the inputs in the InputLVars, and fire(flScalar d
) which fires the rule with a degree d. When firing the rule, the consequents are modulated
according to d and then added to the OutputLVars with the respective weight of the rule. It
is also important to remark that parsing the rules is case-sensitive.

FuzzyAntecedent and FuzzyConsequent

These abstract classes represent the antecedent and consequent of a rule, respectively. FuzzyAntecedent
has a pointer to the input variable to which it is related in order to access the value of the re-
spective InputLVar, similarly, FuzzyConsequent has a pointer to the output variable to
which it is related in order to aggregate the respective modulated linguistic term to the output.

DescriptiveAntecedent

This class is based on FuzzyAntecedent and it is a red-black tree that relates two proposi-
tions with an operator, for example, input-1 is LOW and input-2 is GOOD is separated into
a left antecedent (input-1 is LOW), an operator (and), and a right antecedent (input-2 is
GOOD). Given the recursion of this model, it is possible to create rules of any depth, as it is
evaluated bottom-up. This is the class used by MamdaniRule and TakagiSugenoRule.

Hedge

Hedges are modifiers of the propositions (antecedent) and actions (consequent). All hedges
must implement the interface Hedge, and must be included when configuring the FuzzyEngine.
FuzzyLite v1.03 includes four hedges: not (HedgeNot), somewhat (HedgeSomewhat),
very (HedgeVery), any (HedgeAny). In order to use HedgeAny, it is necessary to include a
dummy linguistic term to comply with the general form of the rules (i.e. input-1 is any LOW);
this hedge will always return 1.0, so it does not matter the linguistic term as long as it is within
the linguistic variable used. Figure 2.5 shows the class diagram regarding hedges.

MamdaniRule and TakagiSugenoRule

These classes represents the type of rules of a system based on Mamdani’s rules, and the one
based on Takagi-Sugeno rules, respectively. They extend the abstract class FuzzyRule by im-
plementing the parse()method accordingly. Both classes use DescriptiveAntecedent as
the antecedent of the rule, but differ in the consequent: MamdaniRule uses MamdaniConsequent,
and TakagiSugenoRule uses TakagiSugenoConsequent.

MamdaniConsequent and TakagiSugenoConsequent

The consequent of a Mamdani rule is of the form: OutputLVar is [Hedge∗] LinguisticTerm,
where [Hedge∗] means that none or many hedges may be included.

Conversely, the consequent of a Takagi-Sugeno rule is of the form OutputLVar={expression},
where expression is a mathematical expression that may include references to the values of the
InputLVars, in which case the name of the input variable is used (e.g. ”... f x=0.5 * input-1 +
(sin input-2)”). This implementation also allows to include previously computed outputs, in
which case the name of the output should be used instead.

16 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 2. THE MODEL 2.4. FUZZY ENGINE

Figure 2.5: Class diagram: Hedges

2.4 Fuzzy engine

The class diagram for this group can be seen in figure 2.6. It contains the class FuzzyEngine
which is composed by a FuzzyOperator, a vector of RuleBlocks which contain the FuzzyRules,
a HedgeSet that contains the hedges registered in the engine, and a vector of InputLVars and
OutputLVars for input and output variables (respectively).

The FuzzyEngine class contains the whole fuzzy control system. The only methods which
might require a bit of explanation are process(bool), and process(int, bool). The
former receives a boolean parameter that defaults to true and (if true) clears the output of all
the output variables. The latter receives an int parameter that determines the index of the
RuleBlock to be fired, and a bool that defaults to true which defines whether to clear the
output of the output variables.

17 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

2.4. FUZZY ENGINE CHAPTER 2. THE MODEL

Fi
gu

re
2.

6:
C

la
ss

di
ag

ra
m

:F
uz

zy
en

gi
ne

18 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 2. THE MODEL 2.5. FUZZY EXCEPTIONS

2.5 Fuzzy exceptions

This group contains some exceptions that are used within several classes of FuzzyLite v1.03.
The class FuzzyException extends the std::exception of the Standard Template Library
(STL), and adds additional methods. The other classes derived from FuzzyException also
contain some static methods to help a bit with the programming. There is not much to say
about these exceptions, except to take a look at the code when using them to become familiar.
Figure 2.7 shows the class diagram for this group.

Figure 2.7: Class diagram: Fuzzy exceptions

19 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

Chapter 3

Examples

3.1 Example #1: Basic FIS

This is a basic FIS composed of one input variable and one output variable.

1 fl::FuzzyEngine engine;
2 engine.hedgeSet().add(new fl::HedgeNot);
3 engine.hedgeSet().add(new fl::HedgeSomewhat);
4 engine.hedgeSet().add(new fl::HedgeVery);
5 fl::InputLVar* energy = new fl::InputLVar("Energy");
6 energy->addTerm(new fl::ShoulderTerm("LOW", 0.25, 0.5, true));
7 energy->addTerm(new fl::TriangularTerm("MEDIUM", 0.25, 0.75));
8 energy->addTerm(new fl::ShoulderTerm("HIGH", 0.50, 0.75, false));
9 engine.addInputLVar(energy);

10

11 fl::OutputLVar* health = new fl::OutputLVar("Health");
12 health->addTerm(new fl::TriangularTerm("BAD", 0.0, 0.50));
13 health->addTerm(new fl::TriangularTerm("REGULAR", 0.25, 0.75));
14 health->addTerm(new fl::TriangularTerm("GOOD", 0.50, 1.00));
15 engine.addOutputLVar(health);
16 fl::RuleBlock* block = new fl::RuleBlock();
17 block->addRule(new fl::MamdaniRule("if Energy is LOW then Health is BAD", engine));
18 block->addRule(new fl::MamdaniRule("if Energy is MEDIUM then Health is REGULAR", engine));
19 block->addRule(new fl::MamdaniRule("if Energy is HIGH then Health is GOOD", engine));
20 engine.addRuleBlock(block);

Once the FIS is configured, the control process may begin anytime by setting the input
value to the input variables and processing. For example,

22 for (fl::flScalar in = 0.0; in < 1.1; in += 0.1) {
23 energy->setInput(in);
24 engine.process();
25 fl::flScalar out = health->output().defuzzify();
26 FL_LOG("Energy=" << in);
27 FL_LOG("Energy is " << energy->fuzzify(in));
28 FL_LOG("Health=" << out);
29 FL_LOG("Health is " << health->fuzzify(out));
30 FL_LOG("--");
31 }

The previous code would yield the following results in console (assuming that FL USE LOG
was defined):

1 Energy=0
2 Energy is 1.000/LOW + 0.000/MEDIUM + 0.000/HIGH
3 Health=0.249902
4 Health is 1.000/BAD + 0.000/REGULAR + 0.000/GOOD
5 --
6 Energy=0.1

20

CHAPTER 3. EXAMPLES 3.2. EXAMPLE #2: 3D POLE BALANCING

7 Energy is 1.000/LOW + 0.000/MEDIUM + 0.000/HIGH
8 Health=0.249902
9 Health is 1.000/BAD + 0.000/REGULAR + 0.000/GOOD

10 --
11 Energy=0.2
12 Energy is 1.000/LOW + 0.000/MEDIUM + 0.000/HIGH
13 Health=0.249902
14 Health is 1.000/BAD + 0.000/REGULAR + 0.000/GOOD
15 --
16 Energy=0.3
17 Energy is 0.800/LOW + 0.200/MEDIUM + 0.000/HIGH
18 Health=0.309985
19 Health is 0.760/BAD + 0.240/REGULAR + 0.000/GOOD
20 --
21 Energy=0.4
22 Energy is 0.400/LOW + 0.600/MEDIUM + 0.000/HIGH
23 Health=0.394929
24 Health is 0.420/BAD + 0.580/REGULAR + 0.000/GOOD
25 --
26 Energy=0.5
27 Energy is 0.000/LOW + 1.000/MEDIUM + 0.000/HIGH
28 Health=0.499902
29 Health is 0.000/BAD + 1.000/REGULAR + 0.000/GOOD
30 --
31 Energy=0.6
32 Energy is 0.000/LOW + 0.600/MEDIUM + 0.400/HIGH
33 Health=0.604537
34 Health is 0.000/BAD + 0.582/REGULAR + 0.418/GOOD
35 --
36 Energy=0.7
37 Energy is 0.000/LOW + 0.200/MEDIUM + 0.800/HIGH
38 Health=0.689444
39 Health is 0.000/BAD + 0.242/REGULAR + 0.758/GOOD
40 --
41 Energy=0.8
42 Energy is 0.000/LOW + 0.000/MEDIUM + 1.000/HIGH
43 Health=0.749902
44 Health is 0.000/BAD + 0.000/REGULAR + 1.000/GOOD
45 --
46 Energy=0.9
47 Energy is 0.000/LOW + 0.000/MEDIUM + 1.000/HIGH
48 Health=0.749902
49 Health is 0.000/BAD + 0.000/REGULAR + 1.000/GOOD
50 --
51 Energy=1
52 Energy is 0.000/LOW + 0.000/MEDIUM + 1.000/HIGH
53 Health=0.749902
54 Health is 0.000/BAD + 0.000/REGULAR + 1.000/GOOD
55 --

3.2 Example #2: 3D Pole Balancing

A simulation video of this fuzzy system implemented with FuzzyLite v1.03 as shown be-
low is available at http://www.youtube.com/watch?v=YOKk8G_5aRA.

1 FuzzyEngine engine("pole-balancing-3d");
2

3 InputLVar* anglex = new InputLVar("AngleX");
4 std::vector<std::string> labels;
5 labels.push_back("NEAR_0");
6 labels.push_back("NEAR_45");
7 labels.push_back("NEAR_90");

21 http://code.google.com/p/fuzzy-lite/

http://www.youtube.com/watch?v=YOKk8G_5aRA
http://code.google.com/p/fuzzy-lite/

3.2. EXAMPLE #2: 3D POLE BALANCING CHAPTER 3. EXAMPLES

8 labels.push_back("NEAR_135");
9 labels.push_back("NEAR_180");

10 anglex->createTerms(5, LinguisticTerm::MF_SHOULDER, 0, 180, labels);
11 engine.addInputLVar(anglex);
12

13 InputLVar* anglez = new InputLVar("AngleZ");
14 labels.clear();
15 labels.push_back("NEAR_0");
16 labels.push_back("NEAR_45");
17 labels.push_back("NEAR_90");
18 labels.push_back("NEAR_135");
19 labels.push_back("NEAR_180");
20 anglez->createTerms(5, LinguisticTerm::MF_SHOULDER, 0, 180, labels);
21 engine.addInputLVar(anglez);
22

23 OutputLVar* forcex = new OutputLVar("ForceX");
24 labels.clear();
25 labels.push_back("NL");
26 labels.push_back("NS");
27 labels.push_back("ZR");
28 labels.push_back("PS");
29 labels.push_back("PL");
30 forcex->createTerms(5, LinguisticTerm::MF_TRIANGULAR, -1, 1, labels);
31 engine.addOutputLVar(forcex);
32

33 OutputLVar* forcez = new OutputLVar("ForceZ");
34 labels.clear();
35 labels.push_back("NL");
36 labels.push_back("NS");
37 labels.push_back("ZR");
38 labels.push_back("PS");
39 labels.push_back("PL");
40 forcez->createTerms(5, LinguisticTerm::MF_TRIANGULAR, -1, 1, labels);
41 engine.addOutputLVar(forcez);
42

43 RuleBlock* ruleblock = new RuleBlock("Rules");
44 ruleblock->addRule(new MamdaniRule("if AngleX is NEAR_180 then ForceX is NL", engine));
45 ruleblock->addRule(new MamdaniRule("if AngleX is NEAR_135 then ForceX is NS", engine));
46 ruleblock->addRule(new MamdaniRule("if AngleX is NEAR_90 then ForceX is ZR", engine));
47 ruleblock->addRule(new MamdaniRule("if AngleX is NEAR_45 then ForceX is PS", engine));
48 ruleblock->addRule(new MamdaniRule("if AngleX is NEAR_0 then ForceX is PL", engine));
49

50 ruleblock->addRule(new MamdaniRule("if AngleZ is NEAR_180 then ForceZ is NL", engine));
51 ruleblock->addRule(new MamdaniRule("if AngleZ is NEAR_135 then ForceZ is NS", engine));
52 ruleblock->addRule(new MamdaniRule("if AngleZ is NEAR_90 then ForceZ is ZR", engine));
53 ruleblock->addRule(new MamdaniRule("if AngleZ is NEAR_45 then ForceZ is PS", engine));
54 ruleblock->addRule(new MamdaniRule("if AngleZ is NEAR_0 then ForceZ is PL", engine));
55 engine.addRuleBlock(ruleblock);
56

57 FL_LOG(engine.toString());

The output from the previous block of code exports the fuzzy system to text using the
Fuzzy Controller Language (FCL) as shown below.

1 FUNCTION_BLOCK pole-balancing-3d
2

3 VAR_INPUT
4 AngleX: REAL;
5 AngleZ: REAL;
6 END_VAR
7

8 FUZZIFY AngleX
9 TERM NEAR_0 := Shoulder left(0 60);

10 TERM NEAR_45 := Triangular (30 60 90);

22 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 3. EXAMPLES 3.3. EXAMPLE 3: APPROXIMATING A FUNCTION

11 TERM NEAR_90 := Triangular (60 90 120);
12 TERM NEAR_135 := Triangular (90 120 150);
13 TERM NEAR_180 := Shoulder right(120 180);
14 END_FUZZIFY
15

16 FUZZIFY AngleZ
17 TERM NEAR_0 := Shoulder left(0 60);
18 TERM NEAR_45 := Triangular (30 60 90);
19 TERM NEAR_90 := Triangular (60 90 120);
20 TERM NEAR_135 := Triangular (90 120 150);
21 TERM NEAR_180 := Shoulder right(120 180);
22 END_FUZZIFY
23

24 VAR_OUTPUT
25 ForceX: REAL
26 ForceZ: REAL
27 END_VAR
28

29 DEFUZZIFY ForceX
30 TERM NL := Triangular (-1 -0.666667 -0.333333);
31 TERM NS := Triangular (-0.666667 -0.333333 5.96046e-08);
32 TERM ZR := Triangular (-0.333333 5.96046e-08 0.333333);
33 TERM PS := Triangular (5.96046e-08 0.333333 0.666667);
34 TERM PL := Triangular (0.333333 0.666667 1);
35 END_DEFUZZIFY
36

37 DEFUZZIFY ForceZ
38 TERM NL := Triangular (-1 -0.666667 -0.333333);
39 TERM NS := Triangular (-0.666667 -0.333333 5.96046e-08);
40 TERM ZR := Triangular (-0.333333 5.96046e-08 0.333333);
41 TERM PS := Triangular (5.96046e-08 0.333333 0.666667);
42 TERM PL := Triangular (0.333333 0.666667 1);
43 END_DEFUZZIFY
44

45 RULEBLOCK Rules
46 RULE 1: if AngleX is NEAR_180 then ForceX is NL;
47 RULE 2: if AngleX is NEAR_135 then ForceX is NS;
48 RULE 3: if AngleX is NEAR_90 then ForceX is ZR;
49 RULE 4: if AngleX is NEAR_45 then ForceX is PS;
50 RULE 5: if AngleX is NEAR_0 then ForceX is PL;
51 RULE 6: if AngleZ is NEAR_180 then ForceZ is NL;
52 RULE 7: if AngleZ is NEAR_135 then ForceZ is NS;
53 RULE 8: if AngleZ is NEAR_90 then ForceZ is ZR;
54 RULE 9: if AngleZ is NEAR_45 then ForceZ is PS;
55 RULE 10: if AngleZ is NEAR_0 then ForceZ is PL;
56 END_RULEBLOCK
57

58 END_FUNCTION_BLOCK

3.3 Example 3: Approximating a function

It is also possible to create a fuzzy system to approximate a function. For example, if we were
to approximate the function sin(x)/x, we could do so by using the with the following code.

1 FuzzyOperator& op = FuzzyOperator::DefaultFuzzyOperator();
2 op.setDefuzzifier(new TakagiSugenoDefuzzifier);
3 FuzzyEngine engine("approximation", op);
4

5 fl::InputLVar* x = new fl::InputLVar("x");
6 x->addTerm(new fl::TriangularTerm("NEAR_1", 0, 2));
7 x->addTerm(new fl::TriangularTerm("NEAR_2", 1, 3));
8 x->addTerm(new fl::TriangularTerm("NEAR_3", 2, 4));

23 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

3.3. EXAMPLE 3: APPROXIMATING A FUNCTION CHAPTER 3. EXAMPLES

9 x->addTerm(new fl::TriangularTerm("NEAR_4", 3, 5));
10 x->addTerm(new fl::TriangularTerm("NEAR_5", 4, 6));
11 x->addTerm(new fl::TriangularTerm("NEAR_6", 5, 7));
12 x->addTerm(new fl::TriangularTerm("NEAR_7", 6, 8));
13 x->addTerm(new fl::TriangularTerm("NEAR_8", 7, 9));
14 x->addTerm(new fl::TriangularTerm("NEAR_9", 8, 10));
15 engine.addInputLVar(x);
16

17 fl::OutputLVar* f_x = new fl::OutputLVar("f_x");
18 f_x->addTerm(new fl::FunctionTerm("function", "(sin x) / x", 0, 10));
19 engine.addOutputLVar(f_x);
20

21 fl::RuleBlock* block = new fl::RuleBlock();
22 block->addRule(new fl::TakagiSugenoRule("if x is NEAR_1 then f_x=0.84", engine));
23 block->addRule(new fl::TakagiSugenoRule("if x is NEAR_2 then f_x=0.45", engine));
24 block->addRule(new fl::TakagiSugenoRule("if x is NEAR_3 then f_x=0.04", engine));
25 block->addRule(new fl::TakagiSugenoRule("if x is NEAR_4 then f_x=-0.18", engine));
26 block->addRule(new fl::TakagiSugenoRule("if x is NEAR_5 then f_x=-0.19", engine));
27 block->addRule(new fl::TakagiSugenoRule("if x is NEAR_6 then f_x=-0.04", engine));
28 block->addRule(new fl::TakagiSugenoRule("if x is NEAR_7 then f_x=0.09", engine));
29 block->addRule(new fl::TakagiSugenoRule("if x is NEAR_8 then f_x=0.12", engine));
30 block->addRule(new fl::TakagiSugenoRule("if x is NEAR_9 then f_x=0.04", engine));
31

32 engine.addRuleBlock(block);
33

34 int n = 40;
35 flScalar mse = 0;
36 for (fl::flScalar in = x->minimum(); in < x->maximum() ;
37 in += (x->minimum() + x->maximum()) / n) {
38 x->setInput(in);
39 engine.process();
40 flScalar expected = f_x->term(0)->membership(in);
41 flScalar obtained = f_x->output().defuzzify();
42 flScalar se = (expected - obtained) * (expected - obtained);
43 mse += isnan(se) ? 0 : se;
44 FL_LOG("x=" << in << "\texpected_out=" << expected << "\tobtained_out=" << obtained
45 << "\tse=" << se);
46 }
47 FL_LOG("MSE=" << mse / n);

The output of this piece of code is the following.

x=0.000 expected_out=nan obtained_out=nan se=nan
x=0.250 expected_out=0.990 obtained_out=0.840 se=0.022
x=0.500 expected_out=0.959 obtained_out=0.840 se=0.014
x=0.750 expected_out=0.909 obtained_out=0.840 se=0.005
x=1.000 expected_out=0.841 obtained_out=0.840 se=0.000
x=1.250 expected_out=0.759 obtained_out=0.743 se=0.000
x=1.500 expected_out=0.665 obtained_out=0.645 se=0.000
x=1.750 expected_out=0.562 obtained_out=0.547 se=0.000
x=2.000 expected_out=0.455 obtained_out=0.450 se=0.000
x=2.250 expected_out=0.346 obtained_out=0.347 se=0.000
x=2.500 expected_out=0.239 obtained_out=0.245 se=0.000
x=2.750 expected_out=0.139 obtained_out=0.142 se=0.000
x=3.000 expected_out=0.047 obtained_out=0.040 se=0.000
x=3.250 expected_out=-0.033 obtained_out=-0.015 se=0.000
x=3.500 expected_out=-0.100 obtained_out=-0.070 se=0.001
x=3.750 expected_out=-0.152 obtained_out=-0.125 se=0.001
x=4.000 expected_out=-0.189 obtained_out=-0.180 se=0.000
x=4.250 expected_out=-0.211 obtained_out=-0.183 se=0.001

24 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 3. EXAMPLES 3.3. EXAMPLE 3: APPROXIMATING A FUNCTION

x=4.500 expected_out=-0.217 obtained_out=-0.185 se=0.001
x=4.750 expected_out=-0.210 obtained_out=-0.188 se=0.001
x=5.000 expected_out=-0.192 obtained_out=-0.190 se=0.000
x=5.250 expected_out=-0.164 obtained_out=-0.153 se=0.000
x=5.500 expected_out=-0.128 obtained_out=-0.115 se=0.000
x=5.750 expected_out=-0.088 obtained_out=-0.078 se=0.000
x=6.000 expected_out=-0.047 obtained_out=-0.040 se=0.000
x=6.250 expected_out=-0.005 obtained_out=-0.007 se=0.000
x=6.500 expected_out=0.033 obtained_out=0.025 se=0.000
x=6.750 expected_out=0.067 obtained_out=0.058 se=0.000
x=7.000 expected_out=0.094 obtained_out=0.090 se=0.000
x=7.250 expected_out=0.114 obtained_out=0.098 se=0.000
x=7.500 expected_out=0.125 obtained_out=0.105 se=0.000
x=7.750 expected_out=0.128 obtained_out=0.112 se=0.000
x=8.000 expected_out=0.124 obtained_out=0.120 se=0.000
x=8.250 expected_out=0.112 obtained_out=0.100 se=0.000
x=8.500 expected_out=0.094 obtained_out=0.080 se=0.000
x=8.750 expected_out=0.071 obtained_out=0.060 se=0.000
x=9.000 expected_out=0.046 obtained_out=0.040 se=0.000
x=9.250 expected_out=0.019 obtained_out=0.040 se=0.000
x=9.500 expected_out=-0.008 obtained_out=0.040 se=0.002
x=9.750 expected_out=-0.033 obtained_out=0.040 se=0.005
MSE=0.001

25 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

Appendix

GUI Setup

The following figure shows the Setup part of the GUI build for FuzzyLite v1.03.

26

CHAPTER 3. EXAMPLES 3.3. EXAMPLE 3: APPROXIMATING A FUNCTION

GUI Setup

The following figure shows the Setup part of the GUI build for FuzzyLite v1.03.

27 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

3.3. EXAMPLE 3: APPROXIMATING A FUNCTION CHAPTER 3. EXAMPLES

License of FuzzyLite v1.03

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions

28 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 3. EXAMPLES 3.3. EXAMPLE 3: APPROXIMATING A FUNCTION

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works

29 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

3.3. EXAMPLE 3: APPROXIMATING A FUNCTION CHAPTER 3. EXAMPLES

that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

30 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

CHAPTER 3. EXAMPLES 3.3. EXAMPLE 3: APPROXIMATING A FUNCTION

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

31 http://code.google.com/p/fuzzy-lite/

http://code.google.com/p/fuzzy-lite/

	Overview
	Introduction
	Features
	What's new?
	FuzzyLite v1.03
	FuzzyLite v.1.02
	FuzzyLite v.1.01
	FuzzyLite v1.0

	What's next?
	Known bugs
	Building from source
	FuzzyLite v1.03
	FuzzyLite v.1.01
	Graphic User Interface
	Requirements
	FuzzyLite v1.03
	FuzzyLite v.1.01

	Acknowledgements

	The Model
	Fuzzy operations
	FuzzyOperator
	FuzzyOperation
	FuzzyDefuzzifier
	AreaAndCentroidAlgorithm

	Linguistic variables and terms
	LinguisticVariable
	LinguisticTerm

	Fuzzy rules
	FuzzyRule
	FuzzyAntecedent and FuzzyConsequent
	DescriptiveAntecedent
	Hedge
	MamdaniRule and TakagiSugenoRule
	MamdaniConsequent and TakagiSugenoConsequent

	Fuzzy engine
	Fuzzy exceptions

	Examples
	Example #1: Basic FIS
	Example #2: 3D Pole Balancing
	Example 3: Approximating a function

	Appendix
	GUI Setup
	GUI Test
	License of FuzzyLite v1.03

