

Metasploit Remote API Guide

Applicable Products

Metasploit Pro 4.0.0
Metasploit Framework 4.0.0

Document Revision: 0.5.0-DRAFT
 Last Modified: August 18, 2011

Copyright © 2011 Rapid7 LLC | Revision history 2

Metasploit Remote API

Contents
Revision history ... 4

Introduction .. 5

Transport ... 5

Requests .. 5

Responses ... 5

Encoding .. 6

Requests .. 7

Responses ... 8

Versioning ... 9

Programming .. 10

Ruby .. 10

API Reference .. 13

Authentication .. 13

Standard API Methods .. 15

Authentication .. 15

Core ... 18

Console .. 22

Jobs ... 25

Modules .. 27

Plugins ... 34

Sessions ... 35

Metasploit Pro API Methods ... 41

Pro General API ... 41

Pro License API .. 44

Pro Updates API .. 48

Pro Task API... 51

Pro Feature API ... 54

Pro Import API ... 89

Copyright © 2011 Rapid7 LLC | Revision history 3

Pro Loot API... 90

Pro Module API ... 91

Pro Report API ... 94

Pro Meterpreter API ... 94

Unsupported API Methods ... Error! Bookmark not defined.

Metasploit Pro UI APIs ... Error! Bookmark not defined.

Database API .. Error! Bookmark not defined.

Copyright © 2011 Rapid7 LLC | Revision history 4

Revision history

The current document version is 1.0

Revision Date Version Description

August 1, 2011 1.0 Public release of the API and documentation

Copyright © 2011 Rapid7 LLC | Introduction 5

Introduction

This document describes transport, protocol, and individual methods available via the

Metasploit Remote API. This API can be used to programmatically drive the Metasploit

Framework and Metasploit Pro products.

Transport

The Metasploit API is accessed using the HTTP protocol over SSL. In a typical Metasploit Pro

installation, this uses TCP port 3790, however the user can change this as needed. The SSL

certificate is typically self-signed, however the user can exchange this for a root-signed

certificate as necessary. Metasploit Framework users can elect to use SSL or plain HTTP and the

port can be user specified as well. Callers of this API should allow these various transport-level

options to be configured by the user.

Requests

Client requests are encapsulated in a standard HTTP POST to a specific URI, typically "/api" or

"/api/1.0". This POST request must have the Content-Type header specified as

"binary/message-pack", with the body of the request containing actual RPC message.

 A sample request is shown below:

POST /api/1.0 HTTP/1.1

Host: RPC Server

Content-Length: 128

Content-Type: binary/message-pack

<128 bytes of encoded data>

Responses

Copyright © 2011 Rapid7 LLC | Encoding 6

Server responses are standard HTTP replies. The HTTP status code indicates the overall result of

a particular request. The meaning of each status code is explained in the table below.

HTTP Code Meaning

200 The request was successfully processed

500 The request resulted in an error

401 The authentication credentials supplied were not valid

403 The authentication credentials supplied were not granted access to the resource

404 The request was sent to an invalid URI

In all circumstances except for a 404 result, the detailed response will be included in the

message body.

The response content-type will always be "binary/message-pack" with the exception of the 404

response format, in which case the body may contain a HTML document.

A sample response is shown below

HTTP/1.1 200 OK

Content-Length: 1024

Content-Type: binary/message-pack

<1024 bytes of encoded data>

Encoding

All requests and responses use the MessagePack encoding (http://www.msgpack.org/). This encoding

provides an efficient, binary-safe way to transfer nested data types. MessagePack provides

implementations for many different languages, all under the Apache open source license.

http://www.msgpack.org/

Copyright © 2011 Rapid7 LLC | Encoding 7

The MessagePack specification is limited to a small set of data types. For this reason, non-native types,

such as dates, are represented as integers or strings. Since MessagePack treats strings as binary

character arrays, special care needs to be taken when using this encoding with Unicode-friendly

languages. For example, in Java, strings used in requests and decoded from responses should always use

the byte arrays type.

An example of a MessagePack encoded array is shown below:

["ABC", 1, 2, 3].to_msgpack()

 "\x94\xA3\x41\x42\x43\x01\x02\x03"

Requests

Requests are formatted as MessagePack encoded arrays. The specific form is

["MethodName", "Parameter1", "Parameter2", …]

With the exception of the authentication API, all methods expect an authentication token as the second

element of the request array, with the rest of the parameters defined by the specific method. Although

most methods use strings and integers for parameters, nested arrays and hashes may be supplied as

well. Methods that accept a list of items as input typically expect these as a single parameter consisting

of an array of elements and not a separate parameter for each element. Some methods may accept a

parameter consisting of a hash that contains specific options.

A call to an authentication method may take the following form:

["auth.login", "username", "password"]

A call to a version method may take the following form:

["core.version", "<token>"]

A call to a more complex method may take the following form:

["modules.search", "<token>", {

"include" => ["exploits", "payloads"],

"keywords" => ["windows"],

"maximum" => 200

}]

Copyright © 2011 Rapid7 LLC | Encoding 8

Responses

Responses use the same MessagePack encoding as requests and are always returned in the form of a

hash, also known as a dictionary. If this hash contains an "error" element with the value of true,

additional information about the error will be present in the hash fields, otherwise, the hash will contain

the results of the API call.

A sample successful response is shown below:

{

"version" => "4.0.0-release",

"ruby" => "1.9.1 x86_64-linux 2010-01-10"

}

A sample error response is shown below:

{

"error" => true,

"error_class" => "ArgumentError",

"error_message" => "Unknown API Call"

}

A sample successful response with nested data is shown below:

{

"name" => "Microsoft Server Service Stack Corruption",

"description" => "This module exploits a parsing flaw…",

"license" => "Metasploit Framework License (BSD)",

"filepath" => "/modules/exploits/windows/smb/ms08_067_netapi.rb",

"version" => "12540",

"rank" => 500,

"references" =>

[

 ["CVE", "2008-4250"],

 ["OSVDB", "49243"],

 ["MSB", "MS08-067"]

],

"authors" =>

[

 "hdm <hdm@metasploit.com>",

 "Brett Moore <brett.moore@insomniasec.com>",

],

"targets" =>

{

 0 => "Automatic Targeting",

 1 => "Windows 2000 Universal",

 2 => "Windows XP SP0/SP1 Universal",

Copyright © 2011 Rapid7 LLC | Encoding 9

 3 => "Windows XP SP2 English (NX)",

 4 => "Windows XP SP3 English (NX)"

}

"default_target" => 0

}

Versioning

The last parameter in the API URL is the requested version number. To prepare your code for future
versions it is recommended that you append "/1.0" or whatever version of this API you have tested
against. A request for the bare API URL without a version number will result in the latest version of the
API being used to handle the request. For example, the request below will request that version 1.1 of
the API should be used.

POST /api/1.1 HTTP/1.1

Host: RPC Server

Content-Length: 128

Content-Type: binary/message-pack

<128 bytes of encoded data>

Copyright © 2011 Rapid7 LLC | Programming 10

Programming

The Metasploit products are primarily written in the Ruby programming language; Ruby is by

far the easiest way to use the remote API. In addition to Ruby, any language with support for

MessagePack (Java, Python, C, etc) and HTTPS communication can take advantage of the

remote API.

Ruby

To get started with the Ruby API, install the msfrpc-client GEM (www.rubygems.org). This GEM depends

on librex, another GEM pulled from the Metasploit Framework source code, and MessagePack. Due to

the size of the librex documentation, it is suggested that you install it first separately, without the builtin

documentation, using the following commands:

gem install librex --no-rdoc --no-ri

gem install msfrpc-client

After the GEM has been installed, the msfrpc-client library becomes available, and two example files are

installed along with the GEM. The following command can be used view the examples:

cd `gem env gemdir`/gems/msfrpc-client-*/examples

ls

msfrpc_irb.rb msfrpc_pro_report.rb

The msfrpc_irb.rb script is a good starting point for using the API. This script, along with the
msfrpc_pro_report.rb example, both use a standard option parsing mechanism exposed by the Ruby
GEM. This allows for the RPC destination to be configured in three different ways.

The first way is through standard command-line arguments, running msfrpc_irb.rb with the --rpc-help
option will display these.

./msfrpc_irb.rb --rpc-help

Usage: ./msfrpc_irb.rb [options]

RPC Options:

 --rpc-host HOST

 --rpc-port PORT

 --rpc-ssl <true|false>

 --rpc-uri URI

 --rpc-user USERNAME

 --rpc-pass PASSWORD

 --rpc-token TOKEN

http://www.rubygems.org/

Copyright © 2011 Rapid7 LLC | Programming 11

 --rpc-config CONFIG-FILE

 --rpc-help

In order to connect to a remote instance of Metasploit, we need to supply the host and port. SSL is
assumed to be on by default, but may be disabled through the relevant option above. The username and
password options can either correspond to a manually configured set of the credentials in the
Metasploit Framework or a Metasploit Pro user account. As an alternative to the username and
password, an authentication token (Metasploit Pro API Key) may be used to authentication instead.

If you wish to store these parameters in a configuration file instead of the command-line, the --rpc-
config option can point to a YAML file with contents matching the syntax below:

options:

 host: server

 port: 3790

 user: username

 pass: password

 token: token

 ssl: true

 uri: /api/1.0

The YAML file options map directly to the command-line options.

Finally, the process environment can be used to set these options. The environment is only considered if
the command-line options are not specified. The corresponding environment variable names for the
options above are:

MSFRPC_HOST

MSFRPC_PORT

MSFRPC_USER

MSFRPC_PASS

MSFRPC_TOKEN

MSFRPC_SSL

MSFRPC_URI

MSFRPC_CONFIG

The MSFRPC_CONFIG variable can point to a YAML configuration file.

For a typical Metasploit Pro installation, the only options we need to specify are the host and either a
username and password, or an authentication token. The example below authenticates to the local
Metasploit Pro instance using an existing user account:

./msfrpc_irb.rb --rpc-user admin --rpc-pass s3cr3t

[*] The RPC client is available in variable 'rpc'

[*] Successfully authenticated to the server

[*] Starting IRB shell...

>>

An important consideration with the msfrpc-client library is that the authentication token is
automatically passed into each method call for you, so when calling a function such as "core.version",

Copyright © 2011 Rapid7 LLC | Programming 12

you do not need to specify the token as the first parameter. For example, the following code works as
you would expect:

>> rpc.call("core.version")

=> {"version"=>"4.0.0-release", "ruby"=>"1.9.2 x86_64-linux 2010-04-

28", "api"=>"1.0"}

For a slightly more complex example, the msfrpc_pro_report.rb script is a good reference. This script will
generate and download an arbitrary report type from an arbitrary project, through the RPC protocol.
The usage is slightly more complicated, as this script registers its own command-line options while still
supporting the standard set.

Usage: ./msfrpc_pro_report.rb [options]

RPC Options:

 --rpc-host HOST

 --rpc-port PORT

 --rpc-ssl <true|false>

 --rpc-uri URI

 --rpc-user USERNAME

 --rpc-pass PASSWORD

 --rpc-token TOKEN

 --rpc-config CONFIG-FILE

 --rpc-help

Report Options:

 --format FORMAT

 --project PROJECT

 --output OUTFILE

 --help

Active Projects:

 default

Sample usage would be as follows:

./msfrpc_pro_report.rb --rpc-user admin --rpc-pass s3cr3t \

 --format PDF --project default --output test.pdf

[*] Report is generating with Task ID 4...

[-] Report saved to test.pdf

These two examples provide a base of functionality that be used to implement any form of wrapper or
automation script you can think of. The msfrpc_irb.rb example is a great way to learn the calling syntax
and behavior of the API, while the msfrpc_pro_report.rb example demonstrates the process of
launching a new task and waiting for it to complete.

Copyright © 2011 Rapid7 LLC | API Reference 13

API Reference

All API functions use the naming convention "<group>.<method>". All product editions share the basic

API groups defined in the Metasploit Framework. Metasploit Pro provides a number of additional APIs

for accessing the Pro features.

Authentication

Access to the Metasploit API is controlled through authentication tokens. An authentication is typically a

randomly generated 32-byte string, but may be created ad-hoc as well. These tokens come in two forms;

temporary and permanent.

A temporary token is returned by the API call auth.login, which consults an internal list of valid

usernames and passwords. If a correct username and password is supplied, a token is returned that is

valid for 5 minutes. This token is automatically extended every time it is used to access an API method. If

the token is not used for 5 minutes, another call to auth.login must be made to obtain a new token.

A permanent token acts as an API key that does not expire. Permanent tokens are stored in the

database backend (api_keys table) when a database is available and in memory otherwise. There are

two ways to create a new permanent token through the API. The first method is to authenticate using a

valid login, then using the temporary token to call the auth.token_generate method. This will create a

permanent token either in the database backend or in-memory, depending on the whether a database

is present.

The Metasploit Framework RPC server requires a username and password to be specified. This

username and password combination can be used with the auth.login API to obtain a temporary token

that will grant access to the rest of the API.

Metasploit Pro, by contrast, generates a permanent authentication token on startup and store this

token in a file named <install>/apps/pro/engine/tmp/service.key. The Metasploit Pro interface provides

the ability to manage permanent authentication tokens through the web interface.

The sequence below demonstrates the use of the auth.login API to obtain a token and the subsequent

use of this token to call the core.version API.

Client: ["auth.login", "username", "password"]

Server: { "result" => "success", "token" => "a1a1a1a1a1a1a1a1" }

Client: ["core.version", "a1a1a1a1a1a1a1a1"]

Server: {

"version" => "4.0.0-release",

Copyright © 2011 Rapid7 LLC | API Reference 14

"ruby" => "1.9.1 x86_64-linux 2010-01-10"

}

Copyright © 2011 Rapid7 LLC | API Reference 15

Standard API Methods

The API methods below are available across all editions of the Metasploit product. Keep in mind that the

behavior of the Metasploit Framework can change depending on whether a database backend has been

configured (it is by default, however).

Authentication

The authentication API provides methods for logging in and managing authentication tokens. The only

API that can be accessed without a valid authentication token is auth.login, which in turn returns a

token. All API users are treated as administrative users and can trivially gain access to the underlying

operating system. For this reason, always protect API Keys as if they granted root access to the system

on which Metasploit is running.

auth.login(String: Username, String: Password)

The auth.login method allows a username and password to be supplied which in turn grants the caller

with a temporary authentication token. This authentication token expires 5 minutes after the last

request made with it.

Successful request:

Client: ["auth.login", "MyUserName", "MyPassword"]

Server: { "result" => "success", "token" => "a1a1a1a1a1a…" }

Unsuccessful request:

Client: ["auth.login", "MyUserName", "BadPassword"]

Server: {

"error" => true,

"error_class" => "Msf::RPC::Exception",

"error_message" => "Invalid User ID or Password"

}

Copyright © 2011 Rapid7 LLC | API Reference 16

auth.logout(String: LogoutToken)

The auth.logout method will remove the specified token from the authentication token list. Note that

this method can be used to disable any temporary token, not just the one used by the current user. This

method will still return "success" when a permanent token is specified, but the permanent token will

not be removed.

Successful request:

Client: ["auth.logout", "<token>", "<LogoutToken>"]

Server: { "result" => "success" }

Unsuccessful request:

Client: ["auth.logout", "<token>", "BadToken"]

Server: {

"error" => true,

"error_class" => "Msf::RPC::Exception",

"error_message" => "Invalid Authentication Token"

}

auth.token_add(String: NewToken)

The auth.token_add will add an arbitrary string as a valid permanent authentication token. This token

can be used for all future authentication purposes. This method will never return an error, as collisions

with an existing token of the same name will be ignored.

Client: ["auth.token_add", "<token>", "<NewToken>"]

Server: { "result" => "success" }

Copyright © 2011 Rapid7 LLC | API Reference 17

auth.token_generate

The auth.token_generate method will create a random 32-byte authentication token, add this token to

the authenticated list, and return this token to the caller. This method should never return an error if

called with a valid authentication token.

Client: ["auth.token_generate", "<token>"]

Server: { "result" => "success", "token" => "a1a1a1a1a1a…" }

auth.token_list

The auth.token_list method will return an array of all tokens, including both temporary tokens stored in

memory and permanent tokens, stored either in memory or in the backend database. This method

should never return an error if called with a valid authentication token.

Client: ["auth.token_list", "<token>"]

Server: { "tokens" => ["token1", "token2", "token3"] }

auth.token_remove(String: TokenToBeRemoved)

The auth.token_remove method will delete a specified token. This will work for both temporary and

permanent tokens, including those stored in the database backend. This method should never return an

error if called with a valid authentication token.

Client: ["auth.token_remove", "<token>", "<TokenToBeRemoved>"]

Server: { "result" => "success" }

Copyright © 2011 Rapid7 LLC | API Reference 18

Core

The core API provides methods for managing global variables in the framework object, saving the

current configuration to disk, manipulating the module load paths, reloading all modules, managing

background threads, and retrieving the server version.

core.add_module_path(String: Path)

This method provides a way to add a new local file system directory (local to the server) as a module

path. This can be used to dynamically load a separate module tree through the API. The Path must be

accessible to the user ID running the Metasploit service and contain a top-level directory for each

module type (exploits, nop, encoder, payloads, auxiliary, post). Module paths will be immediately

scanned for new modules and modules that loaded successfully will be immediately available. Note that

this will NOT unload modules that were deleted from the file system since previously loaded (to remove

all deleted modules, the core.reload_modules method should be used instead). This module may raise

an error response if the specified path does not exist.

Client: ["core.add_module_path", "<token>", "<Path>"]

Server: {

 'exploits' => 800,

 'auxiliary' => 300,

 'post' => 200,

 'encoders' => 30,

 'nops' => 25,

 'payloads' => 250

 }

core.module_stats

This method returns the number of modules loaded, broken down by type.

Client: ["core.module_stats", "<token>"]

Server: {

 'exploits' => 800,

 'auxiliary' => 300,

 'post' => 200,

 'encoders' => 30,

Copyright © 2011 Rapid7 LLC | API Reference 19

 'nops' => 25,

 'payloads' => 250

 }

core.reload_modules

This method provides a way to dump and reload all modules from all configured module paths. This is

the only way to purge a previously loaded module that the caller would like to remove. This method can

take a long time to return, up to a minute on slow servers.

Client: ["core.reload_modules", "<token>"]

Server: {

 'exploits' => 800,

 'auxiliary' => 300,

 'post' => 200,

 'encoders' => 30,

 'nops' => 25,

 'payloads' => 250

 }

core.save

This method causes the current global datastore of the framework instance to be stored to the server's

disk, typically in ~/.msf3/config. This configuration will be loaded by default the next time Metasploit is

started by that user on that server.

Client: ["core.save", "<token>"]

Server: { "result" => "success" }

core.setg(String: OptionName, String: OptionValue)

This method provides a way to set a global datastore value in the framework instance of the server.

Examples of things that can be set include normal globals like LogLevel, but also the fallback for any

modules launched from this point on. For example, the Proxies global option can be set, which would

Copyright © 2011 Rapid7 LLC | API Reference 20

indicate that all modules launched from that point on should go through a specific chain of proxies,

unless the Proxies option is specifically overridden for that module.

Client: ["core.setg", "<token>", "<OptionName>", "<OptionValue>"]

Server: { "result" => "success" }

core.unsetg(String: OptionName)

This method is the counterpart to core.setg in that it provides a way to unset (delete) a previously

configured global option.

Client: ["core.unsetg", "<token>", "<OptionName>"]

Server: { "result" => "success" }

core.thread_list

This method will return a list the status of all background threads along with an ID number that can be

used to shut down the thread.

Client: ["core.thread_list", "<token>"]

Server: {

 0 =>

 {

 "status" => "sleep",

 "critical" => true,

 "name" => "SessionScheduler-1",

 "started" => "2011-05-29 15:36:03 -0500"

 },

 1 =>

 {

 "status" => "sleep",

 "critical" => true,

 "name" => "SessionScheduler-2",

 "started" => "2011-05-29 15:36:03 -0500"

 }

}

Copyright © 2011 Rapid7 LLC | API Reference 21

core.thread_kill(Integer: ThreadID)

This method can be used to kill an errant background thread. The ThreadID should match what was

returned by the core.thread_list method. This method will still return success even if the specified

thread does not exist.

Client: ["core.thread_kill", "<token>", "<ThreadID>"]

Server: { "result" => "success" }

core.version

This method returns basic version information about the running framework instance, the Ruby

interpreter, and the RPC protocol version being used.

Client: ["core.version", "<token>"]

Server: {

"version" => "4.0.0-release",

"ruby" => "1.9.1 x86_64-linux 2010-01-10",

"api" => "1.0"

}

core.stop

This method will result in the immediate shutdown of the Metasploit server. This should only be used in

extreme cases where a better control mechanism is unavailable. Note that the caller may not even

receive a response, depending on how fast the server is killed.

Client: ["core.stop", "<token>"]

Server: { "result" => "success" }

Copyright © 2011 Rapid7 LLC | API Reference 22

Console

The Console API provides the ability to allocate and work with the Metasploit Framework Console. In

addition to being able to send commands and read output, these methods expose the tab completion

backend as well being able to detach from and kill interactive sessions. Note that consoles provide the

ability to do anything a local Metasploit Framework Console user may do, including running system

commands.

console.create

The console.create method is used to allocate a new console instance. The server will return a Console

ID ("id") that is required to read, write, and otherwise interact with the new console. The "prompt"

element in the return value indicates the current prompt for the console, which may include terminal

sequences. Finally, the "busy" element of the return value determines whether the console is still

processing the last command (in this case, it always be false). Note that while Console IDs are currently

integers stored as strings, these may change to become alphanumeric strings in the future. Callers

should treat Console IDs as unique strings, not integers, wherever possible.

Client: ["console.create", "<token>"]

Server: {

"id" => "0",

"prompt" => "msf > ",

"busy" => false

}

console.destroy(String: ConsoleID)

The console.destroy method deletes a running console instance by Console ID. Consoles should always

be destroyed after the caller is finished to prevent resource leaks on the server side. If an invalid Console

ID is specified, the "result" element will be set to the string "failure" as opposed to "success".

Client: ["console.destroy", "<token>", "ConsoleID"]

Server: { "result" => "success" }

console.list

Copyright © 2011 Rapid7 LLC | API Reference 23

The console.list method will return a hash of all existing Console IDs, their status, and their prompts.

Client: ["console.list", "<token>"]

Server: {

 "0" => {

 "id" => "0",

 "prompt" => "msf exploit(\x01\x02\x01\x02handler\x01\x02) > ",

 "busy" => false

 },

 "1" => {

 "id" => "1",

 "prompt" => "msf > ",

 "busy" => true

 }

}

console.write(String: ConsoleID, String: Data)

The console.write method will send data to a specific console, just as if it had been typed by a normal

user. This means that most commands will need a newline included at the end for the console to

process them properly.

Client: ["console.write", "<token>", "0", "version\n"]

Server: { "wrote" => 8 }

console.read(String: ConsoleID)

The console.read method will return any output currently buffered by the console that has not already

been read. The data is returned in the raw form printed by the actual console. Note that a newly

allocated console will have the initial banner available to read.

Client: ["console.read", "<token>", "0"]

Server: {

"data" => "Framework: 4.0.0-release.14644[..]\n",

"prompt" => "msf > ",

"busy" => false

}

Copyright © 2011 Rapid7 LLC | API Reference 24

console.session_detach(String: ConsoleID)

The console.session_detach method simulates the user using the Control+Z shortcut to background an

interactive session in the Metasploit Framework Console. This method can be used to return to the main

Metasploit prompt after entering an interactive session through a "sessions –i" console command or

through an exploit.

Client: ["console.session_detach", "<token>", "ConsoleID"]

Server: { "result" => "success" }

console.session_kill(String: ConsoleID)

The console.session_kill method simulates the user using the Control+C shortcut to abort an interactive

session in the Metasploit Framework Console. This method should only be used after a "sessions –i"

command has been written or an exploit was called through the Console API. In most cases, the session

API methods are a better way to session termination, while the console.session_detach method is a

better way to drop back to the main Metasploit console.

Client: ["console.session_kill", "<token>", "ConsoleID"]

Server: { "result" => "success" }

console.tabs(String: ConsoleID, String: InputLine)

The console.tabs command simulates the user hitting the tab key within the Metasploit Framework

Console. This method will take a current line of input and return the tab completion options that would

be available within the interactive console. This allows an API caller to emulate tab completion through

this interface. For example, setting the InputLine to "hel" for a newly allocated console returns a single

element array with the option "help".

Client: ["console.tabs", "<token>", "ConsoleID", "InputLine"]

Server: { "tabs" => ["option1", "option2", "option3" }

Copyright © 2011 Rapid7 LLC | API Reference 25

Jobs

The Jobs API provides methods for listing jobs, obtaining more information about a specific job, and

killing specific jobs. These methods equate the "jobs" command in the Metasploit Framework Console

are typically used to manage background modules.

job.list

The job.list method will return a hash, keyed by Job ID, of every active job. The Job ID is required to

terminate or obtain more information about a specific job.

Client: ["job.list", "<token>"]

Server: { "0" => "Exploit: windows/browser/ms03_020_ie_objecttype" }

job.info(String: JobID)

The job.info method will return additional data about a specific job. This includes the start time and

complete datastore of the module associated with the job.

Client: ["job.info", "<token>", "JobID"]

Server: {

"jid" => 0,

"name" => "Exploit: windows/browser/ms03_020_ie_objecttype",

"start_time" => 1306708444,

"uripath" => "/aHdzfE1i3v",

"datastore" => {

"EnableContextEncoding" => false,

"DisablePayloadHandler" => false,

"SSL" => false,

"SSLVersion" => "SSL3",

"SRVHOST" => "0.0.0.0",

"SRVPORT" => "8080",

"PAYLOAD" => "windows/meterpreter/reverse_tcp",

Copyright © 2011 Rapid7 LLC | API Reference 26

"LHOST" => "192.168.35.149",

"LPORT"=>"4444"

}

}

job.stop(String: JobID)

The job.stop method will terminate the job specified by the Job ID.

Client: ["job.stop", "<token>", "JobID"]

Server: { "result" => "success" }

Copyright © 2011 Rapid7 LLC | API Reference 27

Modules

The Modules API provides the ability to list modules, enumerate their options, identify compatible

payloads, and actually run them. All module types share the same API group and the module type is

passed in as a parameter when the request would be ambiguous otherwise.

module.exploits

The module.exploits method returns a list of all loaded exploit modules in the framework instance. Note

that the "exploit/" prefix is not included in the path name of the return module.

Client: ["module.exploits", "<token>"]

Server: { "modules" => [

"linux/pop3/cyrus_pop3d_popsubfolders",

"linux/ids/snortbopre",

[…]

]

}

module.auxiliary

The module.auxiliary method returns a list of all loaded auxiliary modules in the framework instance.

Note that the "auxiliary/" prefix is not included in the path name of the return module.

Client: ["module.auxiliary", "<token>"]

Server: { "modules" => [

"pdf/foxit/authbypass",

"admin/motorola/wr850g_cred",

"admin/oracle/post_exploitation/win32exec"

[…]

]

}

Copyright © 2011 Rapid7 LLC | API Reference 28

module.post

The module.post method returns a list of all loaded post modules in the framework instance. Note that

the "post/" prefix is not included in the path name of the return module.

Client: ["module.post", "<token>"]

Server: { "modules" => [

"multi/gather/env",

"windows/escalate/bypassuac",

[…]

]

}

module.payloads

The module.payloads method returns a list of all loaded payload modules in the framework instance.

Note that the "payload/" prefix is not included in the path name of the return module.

Client: ["module.payloads", "<token>"]

Server: { "modules" => [

"linux/armle/exec",

"linux/armle/shell_reverse_tcp",

[…]

]

}

module.encoders

The module.encoders method returns a list of all loaded encoder modules in the framework instance.

Note that the "encoder/" prefix is not included in the path name of the return module.

Client: ["module.encoders", "<token>"]

Server: { "modules" => [

Copyright © 2011 Rapid7 LLC | API Reference 29

"mipsbe/longxor",

"sparc/longxor_tag",

[…]

]

}

module.nops

The module.nops method returns a list of all loaded nop modules in the framework instance. Note that

the "nop/" prefix is not included in the path name of the return module.

Client: ["module.nops", "<token>"]

Server: { "modules" => [

"armle/simple",

"sparc/random",

[…]

]

}

module.info(String: ModuleType, String: ModuleName)

The module.info method returns a hash of detailed information about the specified module. The

ModuleType should be one "exploit", "auxiliary", "post", "payload", "encoder", and "nop". The

ModuleName can either include module type prefix ("exploit/") or not.

Client: ["module.info", "<token>", "ModuleType", "ModuleName"]

Server: {

"name" => "SPARC NOP generator",

"description" => "SPARC NOP generator",

"license" => "Metasploit Framework License (BSD)",

"filepath" => "<msf>/modules/nops/sparc/random.rb",

"version" => "10394",

"rank" => 300,

"references" => [],

Copyright © 2011 Rapid7 LLC | API Reference 30

"authors" => ["vlad902 <vlad902@gmail.com>"]

}

module.options(String: ModuleType, String: ModuleName)

The module.options method returns a hash of datastore options for the specified module. The

ModuleType should be one "exploit", "auxiliary", "post", "payload", "encoder", and "nop". The

ModuleName can either include module type prefix ("exploit/") or not.

Client: ["module.options", "<token>", "ModuleType", "ModuleName"]

Server: {

"SSL"=> {

"type" => "bool",

"required" => false,

"advanced" => true,

"evasion" => false,

"desc" => "Negotiate SSL for outgoing connections",

"default" => false

},

 "SSLVersion" => {

"type" => "enum",

"required" => false,

"advanced" => true,

"evasion" => false,

"desc" => "Specify the version…",

"default" => "SSL3",

"enums" => ["SSL2", "SSL3", "TLS1"]

}

}

module.compatible_payloads(String: ModuleName)

The module.compatible_payloads method returns a list of payloads that are compatible with the exploit

module name specified.

Client: ["module.compatible_payloads", "<token>", "ModuleName"]

Copyright © 2011 Rapid7 LLC | API Reference 31

Server: { "payloads" => [

"generic/debug_trap",

"generic/shell_bind_tcp",

"generic/shell_reverse_tcp"

]

}

module.target_compatible_payloads(String: ModuleName, Integer: TargetIndex)

The module.target_compatible_payloads method is similar to the module.compatible_payloads method

in that it returns a list of matching payloads, however, it restricts those payloads to those that will work

for a specific exploit target. For exploit modules that can attack multiple platforms and operating

systems, this is the method used to obtain a list of available payloads after a target has been chosen.

Client: ["module.target_compatible_payloads", "<token>", "ModuleName", 1]

Server: { "payloads" => [

"generic/debug_trap",

"generic/shell_bind_tcp",

"generic/shell_reverse_tcp"

]

}

module.compatible_sessions(String: ModuleName }

The module.compatible_sessions method returns a list of payloads that are compatible with the post

module name specified.

Client: ["module.compatible_sessions", "<token>", "ModuleName"]

Server: { "sessions" => [

 "1",

 "2"

]

}

module.encode(String: Data, String: EncoderModule, Hash: Options)

Copyright © 2011 Rapid7 LLC | API Reference 32

The module.encode method provides a way to encode an arbitrary payload (specified as Data) with a

specific encoder and set of options. The available options include:

- format – This option can be used to specify an output format, such as "exe" or "vbs" or "raw"

- badchars – This option can be used to specify a list of raw bytes to avoid in the encoding

- platform – This option can be used to set the operating system platform of the encoder

- arch – This option can be used to set the architecture of the encoder

- ecount – This option specifies the number of encoding passes to be done

For "exe" format, additional options are available:

- altexe – The name of a specific executable template file to use for the output file

- exedir – The name of an alternate directory of templates to consult for the output file

- inject – A boolean indicating whether to inject the payload as new thread

Client: ["module.encode", "<token>", "Data", "EncoderModule", {

"Option1" => "Value1",

"Option2" => "Value2"

 }

]

Server: { "encoded" => "<raw output data>" }

module.execute(String: ModuleType, String: ModuleName, Hash: Datastore)

The module.execute method provides a way to launch an exploit, run an auxiliary module, trigger a post

module on a session, or generate a payload. The ModuleType should be one "exploit", "auxiliary",

"post", and "payload. The ModuleName can either include module type prefix ("exploit/") or not. The

Datastore is the full set of datastore options that should be applied to the module before executing it.

In the case of exploits, auxiliary, or post modules, the server response will return the Job ID of the

running module:

Client: ["module.execute", "<token>", "ModuleType", "ModuleName", {

"RHOST" => "1.2.3.4",

"RPORT" => "80"

 }

]

Copyright © 2011 Rapid7 LLC | API Reference 33

Server: { "job_id" => 1 }

In the case of payload modules, a number of additional options are parsed, including the datastore for

the payload itself. These options are:

- BadChars – The raw list of bytes that needed to be encoded out of the payload

- Format – The output format that the payload should be converted to ("exe", "ruby", "c")

- ForceEncoding – A boolean indicating whether encoding should be done even if bytes are OK

- Template – The path to a template file for EXE output

- Platform – The operating system platform for the encoder

- KeepTemplateWorking – A boolean indiciating whether to inject a new thread or not

- NopSledSize – The size of the prefixed mandatory nop sled (default is 0)

- Iterations – The number of encoding rounds to go through

The response consists of the raw payload data:

Client: ["module.execute", "<token>", "ModuleType", "ModuleName", {

"LHOST" => "4.3.2.1",

"LPORT" => "4444"

 }

]

Server: { "payload" => "<raw payload data>" }

Copyright © 2011 Rapid7 LLC | API Reference 34

Plugins

The Plugin API provides the ability to load, unload, and list loaded plugins.

plugin.load(String: PluginName, Hash: Options)

The plugin.load method will load the specified plugin in the framework instance. The Options parameter

can be used to specify initialization options to the plugin. The individual options are different for each

plugin. A failed load will cause this method to return a "result" value of "failure".

Client: ["plugin.load", "<token>", "PluginName", {

"Option1" => "Value1",

"Option2" => "Value2"

 }

]

Server: { "result" => "success" }

plugin.unload(String: PluginName)

The plugin.unload method will unload a previously loaded plugin by name. The name is not always

identical to the string used to load the plugin in the first place, so callers should check the output of

plugin.loaded when there is any confusion. A failed load will cause this method to return a "result" value

of "failure".

Client: ["plugin.unload", "<token>", "PluginName"]

Server: { "result" => "success" }

plugin.loaded

The plugin.loaded method will enumerate all currently loaded plugins.

Client: ["plugin.loaded", "<token>"]

Server: { "plugins" => ["plugin1", "plugin2", "plugin3"] }

Copyright © 2011 Rapid7 LLC | API Reference 35

Sessions

The Sessions API is used to list, interact with, and terminate open sessions to compromised systems. The

Session ID returned by session.list is used to unique identify a given session. Note that the database IDs

used to identify sessions in the Metasploit Pro user interface are translated to a framework instance-

local Session ID for use by this API.

session.list

This method will list all active sessions in the framework instance.

Client: ["session.list", "<token>"]

Server: {

 "1" => {

 'type' => "shell",

"tunnel_local" => "192.168.35.149:44444",

 "tunnel_peer" => "192.168.35.149:43886",

 "via_exploit" => "exploit/multi/handler",

 "via_payload" => "payload/windows/shell_reverse_tcp",

 "desc" => "Command shell",

 "info" => "",

 "workspace" => "Project1",

 "target_host" => "",

 "username" => "root",

 "uuid" => "hjahs9kw",

 "exploit_uuid" => "gcprpj2a",

 "routes" => []

 }

}

Copyright © 2011 Rapid7 LLC | API Reference 36

session.stop(String: SessionID)

The session.stop method will terminate the session specified in the SessionID parameter.

Client: ["session.stop", "<token>", "SessionID"]

Server: { "result" => "success" }

session.shell_read(String: SessionID, OPTIONAL: Integer:ReadPointer)

The shell.read method provides the ability to read output from a shell session. As of version 3.7.0, shell

sessions also ring buffer their output, allowing multiple callers to read from one session without losing

data. This is implemented through the optional ReadPointer parameter. If this parameter is not given (or

set to 0), the server will reply with all buffered data and a new ReadPointer (as the "seq" element of the

reply). If the caller passes this ReadPointer into subsequent calls to shell.read, only data since the

previous read will be returned. By continuing to track the ReadPointer returned by the last call and pass

it into the next call, multiple readers can all follow the output from a single session without conflict.

Client: ["session.shell_read", "<token>", "SessionID", "ReadPointer]

Server: {

"seq" => "32",

"data" => "uid=0(root) gid=0(root)…"

}

session.shell_write(String: SessionID, String: Data)

The shell.write method provides the ability to write data into an active shell session. Note that most

sessions require a terminating newline before they will process a command.

Client: ["session.shell_write", "<token>", "SessionID", "id\n"]

Server: { "write_count" => "3" }

session.meterpreter_write(String: SessionID, String: Data)

The session.meterpeter_write method provides the ability write commands into the Meterpreter

Console. This emulates how a user would interact with a Meterpreter session from the Metasploit

Framework Console. Note that multiple concurrent callers writing and reading to the same Meterpreter

session through this method can lead to a conflict, where one caller gets the others output and vice

versa. Concurrent access to a Meterpreter session is best handled by running Post modules or Scripts. A

Copyright © 2011 Rapid7 LLC | API Reference 37

newline does not need to specified unless the console is current tied to an interactive channel, such as a

sub-shell.

Client: ["session.meterpreter_write", "<token>", "SessionID", "ps"]

Server: { "result" => "success" }

session.meterpreter_read(String: SessionID)

The session.meterpreter_read method provides the ability to read pending output from a Meterpreter

session console. As noted in the session.meterpreter_write documentation, this method is problematic

when it comes to concurrent access by multiple callers and Post modules or Scripts should be used

instead.

Client: ["session.meterpreter_read", "<token>", "SessionID"]

Server: { "data" => "<raw console output>" }

session.meterpreter_run_single(String: SessionID, String: Command)

The session.meterpreter_run_single method provides the ability to run a single Meterpreter console

command. This method does not need be terminated by a newline. The advantage to

session.meterpreter_run_single over session.meterpreter_write is that this method will always run the

Meterpreter command, even if the console tied to this sessions is interacting with a channel.

Client: ["session.meterpreter_run_single", "<token>", "SessionID", "ps"]

Server: { "result" => "success" }

session.meterpreter_script(String: SessionID, String: ScriptName)

The session.meterpreter_script method provides the ability to run a Meterpreter script on the specified

session. This method does not provide a way to specify arguments for a script, but the

session.metepreter_run_single method can handle this case.

Client: ["session.meterpreter_run_single", "<token>", "SessionID", "ps"]

Server: { "result" => "success" }

Copyright © 2011 Rapid7 LLC | API Reference 38

session.meterpreter_session_detach(String: SessionID)

The session.meterpreter_session_detach method stops any current channel or sub-shell interaction

taking place by the console associated with the specified Meterpreter session. This simulates the

console user pressing the Control+Z hotkey.

Client: ["session.meterpreter_session_detach", "<token>", "SessionID"]

Server: { "result" => "success" }

session.meterpreter_session_kill(String: SessionID)

The session.meterpreter_session_kill method terminates the current channel or sub-shell that the

console associated with the specified Meterpreter session is interacting with. This simulates the console

user pressing the Control+C hotkey.

Client: ["session.meterpreter_session_detach", "<token>", "SessionID"]

Server: { "result" => "success" }

session.meterpreter_tabs(String: SessionID, String: InputLine)

The session.meterpreter_tabs command simulates the user hitting the tab key within the Meterpreter

Console. This method will take a current line of input and return the tab completion options that would

be available within the interactive console. This allows an API caller to emulate tab completion through

this interface. For example, setting the InputLine to "hel" for a newly allocated console returns a single

element array with the option "help".

Client: ["session.meterpreter_tabs", "<token>", "SessionID", "InputLine"]

Server: { "tabs" => ["option1", "option2", "option3" }

session.compatible_modules(String: SessionID)

The session.compatible_modules method returns a list of Post modules that are compatible with the

specified session. This includes matching Meterpreter Post modules to Meterpreter sessions and

enforcing platform and architecture restrictions.

Client: ["session.compatible_modules", "<token>", "SessionID"]

Copyright © 2011 Rapid7 LLC | API Reference 39

Server: { "modules" => ["multi/gather/env"] }

session.shell_upgrade(String: SessionID, String: ConnectHost, String: ConnectPort)

The session.shell_upgrade method will attempt to spawn a new Meterpreter session through an existing

Shell session. This requires that a multi/handler be running (windows/meterpreter/reverse_tcp) and

that the host and port of this handler is provided to this method.

Client: ["session.shell_upgrade", "<token>", "SessionID", "1.2.3.4", 4444]

Server: { "result" => "success" }

session.ring_clear(String: SessionID)

The session.ring_clear method will wipe out the ring buffer associated with a specific shell session. This

may be useful to reclaim memory for idle background sessions.

Client: ["session.ring_clear", "<token>", "SessionID"]

Server: { "result" => "success" }

session.ring_last(String: Session ID)

The session.ring_last method will return the last issued ReadPointer (sequence number) for the

specified Shell session.

Client: ["session.ring_last", "<token>", "SessionID"]

Server: { "seq" => 112 }

session.ring_put(String: SessionID, String: Data)

The session.ring_put method is identical to session.shell_write, please see that entry for more

information.

Copyright © 2011 Rapid7 LLC | API Reference 40

session.ring_read(String: SessionID, OPTIONAL: Integer: ReadPointer)

The session.ring_read method is identical to session.shell_read, please see that entry for more

information.

Copyright © 2011 Rapid7 LLC | API Reference 41

Metasploit Pro API Methods

In addition to the Standard API, Metasploit Pro provides access to the extensive commercial feature set.

The API methods below can be used to manage a remote Metasploit Pro instance and include

everything from product activation to automated mass exploitation and reporting. Note that while the

Pro API includes a number of high-level APIs, the Standard API methods are still the best way to manage

low-level primitives, such as Sessions. In some cases, there is overlap between what a Pro API method

provides and what can be found in the Standard API and the comments listed for the Pro API will make it

clear which use case a specific method is designed to solve.

Pro General API

The Pro General API methods provide access to product version information, active projects, and

configured user accounts.

pro.about

The pro.about method returns a hash containing basic information about the running Metasploit Pro

instance.

Client: ["pro.about", "<token>"]

Server: {"product" => "Metasploit Pro", "version" => "4.0.0" }

pro.workspaces

The pro.workspaces method returns a list of all active Metasploit Pro projects. Although these are called

products in the user interface, the underlying object is referred to as a Workspace, and the terms

workspace and project are used interchangeably throughout this guide.

Client: ["pro.workspaces", "<token>"]

Server: { "Project1" => {

"created_at" => 1303706869,

"updated_at" => 1303706869,

"name" => "Project1",

"boundary" => "192.168.0.0/24",

"description" => "This is the local office network",

Copyright © 2011 Rapid7 LLC | API Reference 42

"owner" => "admin",

"limit_to_network" => false

}

 }

pro.projects

The pro.projects method is an alias for the pro.workspaces method listed above

pro.workspace_add(Hash:WorkspaceOptions)

The pro.workspace_add method adds a new workspace with the specified settings and returns a hash of

that contains information on the newly created workspace.

Client: ["pro.workspace_add", "<token>", { "name" => "Project1"]

Server: { "Project1" => {

"created_at" => 1303706869,

"updated_at" => 1303706869,

"name" => "Project1",

"boundary" => "192.168.0.0/24",

"description" => "This is the local office network",

"owner" => "admin",

"limit_to_network" => false

}

 }

Hash keys that be passed in to this method include:

 name: The unique name of the newly created workspace
boundary: The default network range for this project

 description: A short amount of text describing this project
 limit_to_network: A Boolean indicating whether to restrict operations to the boundary

Copyright © 2011 Rapid7 LLC | API Reference 43

pro.project_add(Hash:WorkspaceOptions)

The pro.project_add method is an alias for the pro.workspace_add method listed above

pro.workspace_del(String:WorkspaceName)

The pro.workspace_del removes the workspace specified in the WorkspaceName parameter.

Client: ["pro.workspace_del", "<token>", "Project1"]

Server: { "result" => "success" }

pro.project_del(String:WorkspaceName)

The pro.project_del method is an alias for the pro.workspace_del method listed above

pro.users

The pro.users method returns a list of all configured user accounts in the Metasploit Pro instance.

Client: ["pro.users", "<token>"]

Server: { "users" => {

"admin" => {

"username" => "admin",

"admin" => true,

"fullname" => "Joe Admin",

"email" => "joe_admin@example.org",

"phone" => "1-555-555-1212",

"company" => "Giant Widgets, Inc."

}

 }

}

Copyright © 2011 Rapid7 LLC | API Reference 44

Pro License API

The Pro License API provides methods for registering and activating the Metasploit Pro product.

pro.register(String: ProductKey)

The pro.register method accepts a product key as the only parameter, validates that the product key

matches the correct format, and saves the product key internally. The pro.activate method must be

used to fully activate the product. This method returns a hash indicating the result of the register call

and the current state of the product.

Client: ["pro.register", "<token>", "ProductKey"]

Server: {

"result" => "success",

"product_key" => "XXXX-XXXX-XXXX-XXXX",

"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",

"product_type" => "Metasploit Pro",

"product_version" => "4.0.0",

"product_revision" => "1",

"registered" => true,

"activated" => false,

"expiration" => 0,

"person" => "",

"organization" => "",

"email" => "",

"users" => 1,

"hardware" => true

 }

pro.activate(Hash: ActivationOptions)

The pro.activate method causes the Metasploit Pro installation to attempt an online activation with the

previously registered product key and the specified ActivationOptions. If a 'product_key' element is

provided in the ActivationOptions hash, this key will be registered prior to the activation process. In

most cases, an empty hash can be specified in place of the ActivationOptions. If the Metasploit Pro

instance does not have direct access to the internet, the ActivationOptions can be used to specify an

Copyright © 2011 Rapid7 LLC | API Reference 45

internal HTTP proxy server. Proxy options can be specified in the 'proxy_host', 'proxy_port', 'proxy_user',

and 'proxy_pass' elements of the ActivationOptions hash. Only standard HTTP proxies are supported.

The response to the activate call will either contain a hash of license information, as the pro.register

method does, or a hash containing a 'result' element with the value set to 'failure', and a second

element, 'reason' indicating the reason for this failure. Note that every product key can only be

activated a limited number of times, with the count determined by the license type. In the event that

activation limit has been reached, Rapid7 Support must be contacted to reset the activation count.

Client: ["pro.activate", "<token>",

{

"proxy_host" => "1.2.3.4",

"proxy_port" => 80

}]

Server: {

"result" => "success",

"product_key" => "XXXX-XXXX-XXXX-XXXX",

"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",

"product_type" => "Metasploit Pro",

"product_version" => "4.0.0",

"product_revision" => "1",

"registered" => true,

"activated" => true,

"expiration" => 1325376000,

"person" => "Licensed Person",

"organization" => "Licensed Organization",

"email" => "bob_admin@example.org",

"users" => 2,

"hardware" => true

 }

pro.activate_offline(String: ActivationFilePath)

The pro.activate_offline method causes the Metasploit Pro installation to load a pre-generated offline

activation file from the specified local filesystem path. Offline activation files are reserved for customers

with network isolation requirements and are available through Rapid7 Support.

Copyright © 2011 Rapid7 LLC | API Reference 46

Client: ["pro.activate_offline", , "<token>",

"/tmp/metasploit_pro_activation.zip"]

Server: {

"result" => "success",

"product_key" => "XXXX-XXXX-XXXX-XXXX",

"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",

"product_type" => "Metasploit Pro",

"product_version" => "4.0.0",

"product_revision" => "1",

"registered" => true,

"activated" => true,

"expiration" => 1325376000,

"person" => "Licensed Person",

"organization" => "Licensed Organization",

"email" => "bob_admin@example.org",

"users" => 2,

"hardware" => true

 }

pro.license

The pro.license method will return a hash indicating the current Metasploit Pro license.

Client: ["pro.license", "<token>"]

Server: {

"result" => "success",

"product_key" => "XXXX-XXXX-XXXX-XXXX",

"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",

"product_type" => "Metasploit Pro",

"product_version" => "4.0.0",

"product_revision" => "1",

"registered" => true,

"activated" => true,

"expiration" => 1325376000,

"person" => "Licensed Person",

Copyright © 2011 Rapid7 LLC | API Reference 47

"organization" => "Licensed Organization",

"email" => "bob_admin@example.org",

"users" => 2,

"hardware" => true

 }

pro.revert_license

The pro.revert_license method attempts to switch to the last successfully activated product license

before the current one. Only one backup license copy is kept and this method does nothing if there is no

backup license available when it is called. The return value is identical to the pro.license call in that it

provides the newly chosen license information as a hash. This method is used to temporarily use a

license that may provide more users or other capabilities and then fallback to the original license when

that temporary license expires.

Client: ["pro.license", "<token>"]

Server: {

"result" => "success",

"product_key" => "XXXX-XXXX-XXXX-XXXX",

"product_serial" => "4dde9e80-c0b2cb0b-6d31b554",

"product_type" => "Metasploit Pro",

"product_version" => "4.0.0",

"product_revision" => "1",

"registered" => true,

"activated" => true,

"expiration" => 1325376000,

"person" => "Licensed Person",

"organization" => "Licensed Organization",

"email" => "bob_admin@example.org",

"users" => 5,

"hardware" => false

 }

Copyright © 2011 Rapid7 LLC | API Reference 48

Pro Updates API

The Pro Updates API provides the ability to check for, download, and apply the latest Metasploit Pro

updates. This API also includes a method for restarting the Metasploit Pro services.

pro.update_available(Hash: UpdateCheckOptions)

The pro.update_available method provides the ability to check for available updates to the Metasploit

Pro instance. The UpdateCheckOptions hash can either be empty or include the 'proxy_host',

'proxy_port', 'proxy_user', and 'proxy_pass' elements to use a HTTP proxy for the check. The return

value includes a hash that indicates whether an update is available, what the version number of this

update is, and a description of what the update contains. Note that the description may contain HTML

formatting.

Client: ["pro.update_available", "<token>", { }]

Server: {

"status" => "success",

 "result" => "update",

"current" => "1",

"version" => "20120125000001",

"info" => "This updates adds new features and fixes…"

}

pro.update_install(Hash: InstallOptions)

The pro.update_install method provides the ability to install an update package by name, specified

through the 'version' element of the InstallOptions hash. The 'proxy_host', 'proxy_port', 'proxy_user',

and 'proxy_pass' elements can be supplied in this hash to indicate that a HTTP proxy should be used.

This method returns a hash indicating whether the update was started successfully and what the current

status of the installation is. The download and installation process is completed as a single step as the

progress can be tracked through calls to the pro.update_status method. Note that the

pro.restart_service method must be called to finalize the update.

Client: ["pro.update_install", "<token>", { "version" => "20120125000001" }

]

Server: {

Copyright © 2011 Rapid7 LLC | API Reference 49

"status" => "success",

 "result" => "Downloading",

"error" => ""

}

pro.update_install_offline(String: UpdatePath)

The pro.update_install_offline method provides the ability install an update package from a local

filesystem. Customers that require offline updates should contact Rapid7 Support to be notified of the

download location of each update package. The status of the offline package installation can be

monitored by calling the pro.update_status method. Note that the pro.restart_service method must be

called to finalize the update.

Client: ["pro.update_install_offline", "<token>",

"/tmp/metasploit_pro_update.zip"]

Server: {

"status" => "success",

 "result" => "Installing",

"error" => ""

}

pro.update_status

The pro.update_status method returns a hash indicating the current status of the update installation

process. If the update is still being retrieved from the server, the current progress of the download will

be returned in the 'download_total', 'download_done', and 'download_pcnt' elements.

Client: ["pro.update_status", "<token>"]

Server: {

"status" => "success",

"result" => "Downloading",

"error" => "",

"download_total" => "1000000",

"download_done" => "100000",

"download_pcnt" => "10"

}

Copyright © 2011 Rapid7 LLC | API Reference 50

pro.update_stop

The pro.update_stop method forcibly stops any existing update process, whether it is downloading the

update package or installing the contents.

Client: ["pro.update_stop", "<token>"]

Server: { "status" => "success" }

pro.restart_service

The pro.restart_service method causes the Metasploit Pro RPC Service (prosvc) and the Metasploit Pro

Web Service to restart. This is necessary to complete the installation of an update package.

Client: ["pro.restart_service", "<token>"]

Server: { "status" => "success" }

Copyright © 2011 Rapid7 LLC | API Reference 51

Pro Task API

Metasploit Pro uses Tasks to manage background jobs initiated by the user through the web interface.

Scanning, exploiting, bruteforcing, importing, and reporting are all handled through Tasks. The Pro Task

API provides methods for enumerating active tasks, stopping tasks, and retrieving the raw log file for a

given task.

pro.task_list

The pro.task_list method returns a hash of active tasks.

Client: ["pro.task_list", "<token>"]

Server: { "108" =>

 {

 "status" => "running",

 "error" => "",

 "created_at" => 1306792667,

 "progress" => 25,

 "description" => "Launching",

 "info" => "#1 ICONICS WebHMI ActiveX Buffer Overflow",

 "workspace" => "Branch Office",

 "username" => "admin",

 "result" => "",

 "path" => "tasks/task_pro.single_108.txt",

 "size" => 425

}

 }

pro.task_status(String: TaskID)

The pro.task_status method returns the current status of a given task.

Client: ["pro.task_status", "<token>", "108"]

Server: { "108" =>

Copyright © 2011 Rapid7 LLC | API Reference 52

 {

 "status" => "running",

 "error" => "",

 "created_at" => 1306792667,

 "progress" => 25,

 "description" => "Launching",

 "info" => "#1 ICONICS WebHMI ActiveX Buffer Overflow",

 "workspace" => "Branch Office",

 "username" => "admin",

 "result" => "",

 "path" => "tasks/task_pro.single_108.txt",

 "size" => 425

}

 }

pro.task_stop(String: TaskID)

The pro.task_stop method terminates the task specified in the TaskID parameter.

Client: ["pro.task_status", "<token>", "108"]

Server: { "task" => "108", "status" => "stopped" }

pro.task_log(String: TaskID)

The pro.task_log method returns the status and log data for the task specified in the TaskID parameter.

Client: ["pro.task_log", "<token>", "108"]

Server: {

 "status" => "running",

 "error" => "",

 "created_at" => 1306792667,

 "progress" => 25,

 "description" => "Launching",

 "info" => "#1 ICONICS WebHMI ActiveX Buffer Overflow",

 "workspace" => "Branch Office",

Copyright © 2011 Rapid7 LLC | API Reference 53

 "username" => "admin",

 "result" => "",

 "path" => "tasks/task_pro.single_108.txt",

 "size" => 425,

 "log" => "<425 bytes of output data>"

 }

pro.task_delete_log(String: TaskID)

The pro.task_delete_log method deletes the associated log file for a specific task.

Client: ["pro.task_delete_log", "<token>", "108"]

Server: { "status" => "succcess" }

Copyright © 2011 Rapid7 LLC | API Reference 54

Pro Feature API

The Pro Feature API includes methods that provide access to many of the top-level features in the

Metasploit Pro user interface. These methods include launching discovery scans, importing data from

other tools, launching automated exploits, running brute force attacks, and generating reports. Since

these methods are designed to expose all of the functionality available through the user interface, they

take a large number of parameters.

pro.start_discover(Hash:Config)

The pro.start_discover method is the backend method that drives the Scan action within the Metasploit

Pro user interface. This action launches a discovery scan against a range of IP addresses, identifying

active hosts, open services, and extracting information from the discovered services. The resulting data

is stored in the backend database. The pro.start_discover method takes a large number of options in the

form of a single Hash parameter and returns a Task ID that can be monitored using the Pro Task API.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

ips YES ["192.168.0.0/24"] This option determines what IP
addresses and IP ranges to
include in the scan. This option
is an array of IP addresses
and/or IP ranges.

workspace YES Project1 This option indicates the
project name that this scan
should be part of. This
correlates to the full name of
the project as listed in the user
interface.

username NO admin This option specifies which Pro
username this scan task should
be attributed to. If not
specified, the first user with
administrative privileges is
used.

DS_BLACKLIST_HOSTS NO 192.168.0.1 This option determines what
addresses within the ips range
should be excluded from the
scan. Multiple entries should
be separated by spaces.

DS_PORTSCAN_SPEED NO Insane This option should be one of

Copyright © 2011 Rapid7 LLC | API Reference 55

Paranoid, Sneaky, Polite,
Normal, Aggressive or Insane.
These correspond to the
common options in the Nmap
security scanner and
progressively increase the
speed of the scan. Insane is
actually a reasonable setting
for a local Ethernet network.

DS_PORTS_EXTRA NO 1-65535 This option allows additional
TCP ports to be included in the
scan. Ports are specified in
Nmap format (ranges
separated by –'s and commas
between ranges).

DS_PORTS_BLACKLIST NO 9100, 1723 This option defines a list of
ports that should always be
excluded

DS_PORTS_CUSTOM NO 1-1024 This option overrides the built-
in port list (derived from the
loaded exploit modules) and
only scans the ports listed.

DS_PORTSCAN_TIMEOUT NO 300 This option sets the maximum
amount of time, in seconds,
that the scanner should spend
on a single host. If you increase
the range of ports to scan with
another option, this should
also be increased. 300 seconds
(5 minutes) is a reasonable
setting even for heavily filtered
networks.

DS_PORTSCAN_SOURCE_PORT NO 53 This option configures the
source port for the scan.
Setting this to 80, 53, or 20 can
often bypass poorly configured
firewalls and access lists.

DS_CustomNmap NO -sF -O This option can be used to
completely override the Nmap
command line normally used
by Pro and replace it
(excluding hosts and ports).

DS_UDP_PROBES NO false This option can be used to
disable UDP service probes by
setting it to false (it is enabled
otherwise).

DS_FINGER_USERS NO false This option can be used to
disable the finger service

Copyright © 2011 Rapid7 LLC | API Reference 56

(79/tcp) automated username
harvesting that occurs by
default when enabled.

DS_SNMP_SCAN NO false This option can be used to
disable the SNMP scanner that
is normally included in the scan
by default. This scanner
attempts to guess a small
number of common SNMP
communities for each targeted
host.

DS_IDENTIFY_SERVICES NO false This option can be used to
disable the service
identification phase that is
normally triggered when one
or services are not identified in
the first pass.

DS_SMBUser NO Administrator This option can be used to
extract additional information
from SMB services if a valid
username and password is
supplied.

DS_SMBPass NO S3cr3t This option defines the
password that corresponds to
the DS_SMBUser option.

DS_SMBDomain NO CORP This option defines the domain
that corresponds to the
DS_SMBUser option.

DS_DRY_RUN NO true This option, when set to true,
will cause the task to show
what it would do, but not
actually send any network
traffic.

DS_SINGLE_SCAN NO true This option, when set to true,
will scan each host sequentially
instead of multiple hosts at
once. Useful for reducing
packet loss on especially poor
networks.

DS_FAST_DETECT NO true This option, when set to true,
will limit the scan to a small set
of TCP ports.

Copyright © 2011 Rapid7 LLC | API Reference 57

A sample request to use the default settings to scan 192.168.0.0/24 would look like:

Client: ["pro.start_discover", "<token>",

{

 "ips" => ["192.168.0.0/24"],

 "workspace" => "Project1"

}

]

If we change the same request to scan all 65535 TCP ports, it would look like:

Client: ["pro.start_discover", "<token>",

{

 "ips" => ["192.168.0.0/24"],

 "workspace" => "Project1",

 "DS_PORTS_CUSTOM" => "1-65535"

 }

]

In any case the reply from a successful request would look like:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 58

pro.start_import(Hash:Config)

The pro.start_import method is what drives the Import action within the Metasploit Pro user interface.

This method assumes that a file is already on the local disk (relative to the Metasploit Pro system) or

that a NeXpose Console has been configured with one or more active sites. To import arbitrary data

without having to upload the file to the server first, please see the pro.import_data method instead. The

pro.start_import method takes a large number of options in the form of a single Hash parameter and

returns a Task ID that can be monitored using the Pro Task API.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this import
should be part of. This
correlates to the full name of
the project as listed in the user
interface.

username NO admin This option specifies which Pro
username this task should be
attributed to. If not specified,
the first user with
administrative privileges is
used.

DS_PATH YES /tmp/nexpose.xml This option specifies the
server-local file path to import.
If you are calling this API from
a remote system, it makes
more sense to call the
pro.import_data API instead.

DS_BLACKLIST_HOSTS NO 192.168.0.1 This option determines what
addresses should be excluded
from the import. Multiple
entries should be separated by
spaces.

DS_PRESERVE_HOSTS NO true This option can be used to
prevent modifications to
existing hosts during an
import.

DS_REMOVE_FILE NO true This option tells the service to
delete the file specified as
DS_PATH after importing it.

DS_ImportTags NO false This option indicates whether
to import tags as well as host
data when processing a

Copyright © 2011 Rapid7 LLC | API Reference 59

Metasploit Pro export file.
DS_NEXPOSE_CONSOLE NO EnterpriseScanner This option, when combined

with the DS_NEXPOSE_SITE
parameter, can be used to
import data directly from a
per-configured NeXpose
Console. Leave this blank to
import from a file path

DS_NEXPOSE_SITE NO MainOffice This option, when combined
with the
DS_NEXPOSE_CONSOLE
parameter, can be used to
import data directly from an
existing NeXpose site. Leave
this blank to import from a file
path.

A sample request to import a NeXpose Export XML would look like:

Client: ["pro.start_import", "<token>",

{

 "workspace" => "Project1",

 "DS_PATH" => "/tmp/nexpose.xml"

}

]

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 60

pro.start_import_creds(Hash:Config)

The pro.start_import_creds method is used to import credentials (users, passwords, hashes, and keys).

This method assumes that a file is already on the local disk (relative to the Metasploit Pro system. The

pro.start_import_creds method takes a large number of options in the form of a single Hash parameter

and returns a Task ID that can be monitored using the Pro Task API.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this import
should be part of. This
correlates to the full name of
the project as listed in the user
interface.

username NO admin This option specifies which Pro
username this task should be
attributed to. If not specified,
the first user with
administrative privileges is
used.

DS_IMPORT_PATH YES /tmp/wordlist.txt This option specifies the
server-local file path to import.

DS_FTYPE YES pass This option determines tells
the service that kind of import
this is. It should be one of
"userpass", "user", "pass",
pwdump", or "ssh_keys".

DS_NAME YES common_passwords This option indicates a unique
name of this imported data
set.

DS_DESC YES Common passwords This option provides a user-
visible description of this
imported data

DS_ORIG_FILE_NAME NO my_passwords.txt This option indicates the
original file name of the
credential data

DS_REMOVE_FILE YES true This option indicates whether
the service should delete the
local file after importing it.

Copyright © 2011 Rapid7 LLC | API Reference 61

A sample request to import a pwdump file would look like:

Client: ["pro.start_import_creds", "<token>",

{

 "workspace" => "Project1",

 "DS_IMPORT_PATH" => "/tmp/pwdump.txt",

 "DS_FTYPE" => "pwdump",

 "DS_NAME" => "domain_dump",

 "DS_DESC" => "Password hashes from the DC",

 "DS_REMOVE_FILE" => false

}

]

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 62

pro.start_nexpose(Hash:Config)

The pro.start_nexpose method is used to launch NeXpose scans directly through the Metasploit Pro

service. The pro.start_nexpose method takes a large number of options in the form of a single Hash

parameter and returns a Task ID that can be monitored using the Pro Task API.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this import
should be part of. This
correlates to the full name of
the project as listed in the user
interface.

username NO admin This option specifies which Pro
username this task should be
attributed to. If not specified,
the first user with
administrative privileges is
used.

DS_WHITELIST_HOSTS YES 192.168.0.0/24 This option specifies the list of
addresses and network ranges
to scan.

DS_BLACKLIST_HOSTS NO 192.168.0.3 This option specifies the list of
addresses and network ranges
to exclude from the whitelist
range.

DS_NEXPOSE_HOST YES 127.0.0.1 This option specifies the
address of the NeXpose
Console

DS_NEXPOSE_PORT NO 3780 This option specifies the port
of the NeXpose Console

DS_NEXPOSE_USER YES nxadmin This option specifies a valid
username for the NeXpose
Console

nexpose_pass YES S3cr3t! This option specifies the
password for the user account.
It uses a different syntax to
prevent the password from
being logged in the Event
table.

DS_SCAN_TEMPLATE YES pentest-audit The option specifies the scan
template to use. The common
templates include: pentest-
audit full-audit exhaustive-

Copyright © 2011 Rapid7 LLC | API Reference 63

audit discovery aggressive-
discovery dos-audit

A sample request to start a new NeXpose scan:

Client: ["pro.start_nexpose", "<token>",

{

 "workspace" => "Project1",

 "DS_WHITELIST_HOSTS" => "192.168.0.0/24",

 "DS_NEXPOSE_HOST" => "127.0.0.1",

 "DS_NEXPOSE_PORT" => 3780,

 "DS_NEXPOSE_USER" => "nxadmin",

 "nexpose_pass" => "s3cr3t",

 "DS_SCAN_TEMPLATE" => "pentest-audit"

}

]

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 64

pro.start_bruteforce(Hash:Config)

The pro.start_bruteforce method is used to launch a new Bruteforce task. The pro.start_bruteforce

method takes a large number of options in the form of a single Hash parameter and returns a Task ID

that can be monitored using the Pro Task API. Keep in mind that the Bruteforce task requires hosts and

services to be present first (via Scan, Import, or NeXpose data sources).

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option
indicates the
project name
that this import
should be part
of. This
correlates to the
full name of the
project as listed
in the user
interface.

username NO admin This option
specifies which
Pro username
this task should
be attributed to.
If not specified,
the first user
with
administrative
privileges is
used.

DS_WHITELIST_HOSTS YES 192.168.0.0/24 This option
specifies the list
of addresses and
network ranges
to test.

DS_BLACKLIST_HOSTS NO 192.168.0.3 This option
specifies the list
of addresses and
network ranges
to exclude from
the target range.

DS_STOP_ON_SUCCESS YES true This option
indicates
whether the

Copyright © 2011 Rapid7 LLC | API Reference 65

bruteforce
should continue
testing a service
after cracking
the first account.

DS_VERBOSE NO true This option
indicates how
much diagnostic
information is
shown during
the brute force.

DS_INCLUDE_KNOWN YES true This option
indicates
whether the
bruteforce
should use
credentials that
were previously
found.

DS_DRY_RUN NO true This option
indicates
whether to skip
the bruteforce
and just show
what usernames
and passwords
would have
been tested.

DS_BRUTEFORCE_SCOPE YES normal This option
indicates what
brute force
mode to operate
in. This is one of
the following
settings: quick,
defaults, normal,
deep, known,
imported, or
50k.

DS_BRUTEFORCE_SPEED YES Turbo This option
specifies how
fast to conduct
the brute force.
This is one of the
following
settings: Glacial,
Slow, Stealthy,
Normal, Fast, or

Copyright © 2011 Rapid7 LLC | API Reference 66

Turbo
DS_BRUTEFORCE_SERVICES YES SSH This option

specifies what
protocols to
test. Multiple
protocols should
be separated by
spaces. Available
protocols
include: SMB,
Postgres, DB2,
MySQL, MSSQL,
Oracle, HTTP,
HTTPS, SSH,
Telnet, FTP,
EXEC, LOGIN,
SHELL, VNC, and
SNMP

DS_BRUTEFORCE_GETSESSION YES true This option
specifies
whether to use
cracked
accounts to gain
access to the
tested systems.

DS_QUICKMODE_CREDS NO Username
Password\n

This option
specifies
additional
credentials to
use as part of
the brute force.
The syntax is
"username"
followed by a
space, following
by the
"password", and
a new line "\n"
for each
credential.

DS_PAYLOAD_METHOD NO auto This option
determines what
connection
method to use
when opening
sessions, it can
be one of auto,
reverse, or bind.

Copyright © 2011 Rapid7 LLC | API Reference 67

DS_PAYLOAD_TYPE NO meterpreter This option
determines
whether to
prefer
meterpreter or
shell session
types.

DS_PAYLOAD_PORTS NO 4000-5000 This option
specifies the
port range to
use for bind and
reverse
connections.

DS_SMB_DOMAINS NO Domain1 This option
specifies a list of
domains,
separated by
spaces, to use
when brute
forcing protocols
that speak
NTLM.

DS_PRESERVE_DOMAINS NO true This option
specifies
whether to use
the original
domain name
with each
username and
password
previously
identified.

DS_CRED_FILE_IDS NO 34 This option
specifies what
imported
credential files
to include in this
brute force task.
This requires
knowledge of
the imported
credential file
IDs.

DS_MAXGUESSESPERSERVICE NO 100 This option
specifies the
maximum
number of
authentication

Copyright © 2011 Rapid7 LLC | API Reference 68

attempts per
service, it
defaults to 0
which is
unlimited.

DS_MAXMINUTESPERSERVICE NO 60 This option
specifies the
maximum
amount of time
in minutes to
spend on each
service, it
defaults to 0
which is
unlimited.

DS_MAXGUESSESPERUSER NO 3 This option
specifies the
maximum
number of
guesses to try
for each unique
user account, it
defaults to 0
which is
unlimited.

DS_MAXMINUTESOVERALL NO 30 This option
specifies the
maximum
amount of time
to run for the
entire brute
force task, it
defaults to 0
which is
unlimited.

DS_MAXGUESSESOVERALL NO 1000 This option
specifies the
maximum
number of
guesses to try
overall, it
defaults to 0
which is
unlimited.

DS_BRUTEFORCE_SKIP_BLANK_PASSWORDS NO true This option
specifies
whether to skip
blank passwords

Copyright © 2011 Rapid7 LLC | API Reference 69

entirely, it
defaults to false.

DS_BRUTEFORCE_SKIP_MACHINE_NAMES NO true This option
specifies
whether to skip
machine names
as a password
seed source for
the wordlist, it
defaults to false.

DS_BRUTEFORCE_SKIP_BUILTIN_WINDOWS_ACCOUNTS NO true This option
specifies
whether to skip
builtin Windows
accounts that
typically do not
have weak
passwords
(service
accounts).

DS_BRUTEFORCE_SKIP_BLANK_BUILTIN_UNIX_ACCOUNTS NO true This options
specifies
whether to skip
builtin Unix
accounts that
typically do have
weak passwords
(service
accounts)

DS_BRUTEFORCE_RECOMBINE_CREDS NO true This option
specifies
whether to
recombine
known,
imported, and
additional
credentials to
create the
wordlists.

DS_MSSQL_WINDOWS_AUTH NO true This option
indicates that
MSSQL Server
authentication
should use
NTLM instead of
Standard mode.
This defaults to
false.

Copyright © 2011 Rapid7 LLC | API Reference 70

A sample request to start a new Bruteforce task:

Client: ["pro.start_bruteforce", "<token>",

{

 "workspace" => "Project1",

 "DS_WHITELIST_HOSTS" => "192.168.0.0/24",

 "DS_BRUTEFORCE_SCOPE" => "defaults",

 "DS_BRUTEFORCE_SERVICES" => "SSH HTTP",

 "DS_BRUTEFORCE_SPEED" => "TURBO",

 "DS_INCLUDE_KNOWN" => normal,

 "DS_BRUTEFORCE_GETSESSION" => true

}

]

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 71

pro.start_exploit(Hash:Config)

The pro.start_exploit method is what drives the Exploit action within the Metasploit Pro user interface.

The pro.start_exploit method takes a large number of options in the form of a single Hash parameter

and returns a Task ID that can be monitored using the Pro Task API. Keep in mind that the Exploit action

requires hosts, services, and optionally vulnerabilities to be present before it can be used. This can be

accomplished using the Scan, Import, and NeXpose actions first.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this
import should be part of.
This correlates to the full
name of the project as
listed in the user
interface.

username NO admin This option specifies
which Pro username this
task should be attributed
to. If not specified, the
first user with
administrative privileges
is used.

DS_WHITELIST_HOSTS YES 192.168.0.0/24 This option specifies the
target addresses and
network ranges to test.

DS_BLACKLIST_HOSTS NO 192.168.0.1 This option determines
what addresses should
be excluded from the
test. Multiple entries
should be separated by
spaces.

DS_WHITELIST_PORTS NO 1-1000 This option specifies
what ports are allowed
during the exploitation
task. This defaults to 1-
65535 (all ports).

DS_BLACKLIST_PORTS NO 80,443 This option specifies a list
of ports to avoid during
the exploitation task.

DS_MinimumRank YES great This option specifies the
minimum reliability level
of exploits to include the
exploitation task. This is

Copyright © 2011 Rapid7 LLC | API Reference 72

one of the following
settings, in order of
increasing liability: low,
average, normal, good,
great, or excellent.

DS_EXPLOIT_SPEED YES 5 This option indicates how
many exploits to run in
parallel. The default is 5
and a reasonable
maximum is 10 due to
how resources are
allocated.

DS_EXPLOIT_TIMEOUT NO 5 This option sets the
maximum amount of
time any individual
exploit can run. Setting
this below 2 minutes can
prevent some exploits
from working.

DS_LimitSessions NO false This option determines
whether to attempt to
avoid exploiting systems
that already have an
active session. The
default is true.

DS_IgnoreFragileDevices NO false This option specifies
whether to avoid running
exploits against systems
that are known to fall
over during common
testing. This is based on
an internal blacklist and
results in printers and
many network devices
being skipped
automatically by the
exploit engine. This
setting defaults to true.

 DS_FilterByOS NO false This option instructs the
exploit engine to use OS
information when
matching exploits to
hosts. Exploits will only
be skipped when the
confidence of the OS
signature is high. The
default for this option is
true.

Copyright © 2011 Rapid7 LLC | API Reference 73

DS_OnlyMatch NO true This option, when set to
true, instructions to
exploit engine to match
exploits but not actually
run them. The default
setting is false.

DS_MATCH_VULNS YES false This option instructs the
exploit engine to match
exploits based on
vulnerability references.
This setting defaults to
true

DS_MATCH_PORTS YES false This option instructs the
exploit engine to match
exploits based on open
services. This setting
defaults to true.

DS_PAYLOAD_METHOD NO auto This option determines
what connection method
to use when opening
sessions, it can be one of
auto, reverse, or bind.

DS_PAYLOAD_TYPE NO meterpreter This option determines
whether to prefer
meterpreter or shell
session types.

DS_PAYLOAD_PORTS NO 4000-5000 This option specifies the
port range to use for
bind and reverse
connections.

DS_EVASION_LEVEL_TCP NO 1 This option specifies a
transport-level evasion
level between 0 and 3.

DS_EVASION_LEVEL_APP NO 1 This option specifies an
application-level evasion
level between 0 and 3.

DS_ModuleFilter NO exploit/windows/smb/psexec This option specifies a
whitelist of module
names that are allowed
to be run, separated by
commas. By default all
modules are considered
that meet the other
criteria.

Copyright © 2011 Rapid7 LLC | API Reference 74

A sample request to run exploits across a network range:

Client: ["pro.start_exploit", "<token>",

{

 "workspace" => "Project1",

 "DS_WHITELIST_HOSTS" => "192.168.0.0/24",

 "DS_MinimumRank" => "great",

 "DS_EXPLOIT_SPEED" => 5,

 "DS_EXPLOIT_TIMEOUT" => 2,

 "DS_LimitSessions" => true,

 "DS_MATCH_VULNS" => true,

 "DS_MATCH_PORTS" => true

}

]

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 75

pro.start_webscan(Hash:Config)

The pro.start_webscan method is what drives the WebScan action within the Metasploit Pro user

interface. The pro.start_webscan method takes a large number of options in the form of a single Hash

parameter and returns a Task ID that can be monitored using the Pro Task API. The individual options

within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this
import should be part of.
This correlates to the full
name of the project as
listed in the user
interface.

username NO admin This option specifies
which Pro username this
task should be attributed
to. If not specified, the
first user with
administrative privileges
is used.

DS_URLS YES http://site/ This option specifies a list
of URLs (space
separated) to spider.

DS_MAX_PAGES YES 1000 This options indicates the
maximum number of
pages the spider should
analyze per URL

DS_MAX_MINUTES YES 5 This option sets a
maximum spider time
per URL

DS_MAX_THREADS YES 1 This option specifies the
number of concurrent
threads to spider with
per URL. Reasonable
values are between 1 and
5.

DS_BasicAuthUser NO Admin This option indicates that
HTTP Basic
Authentication should be
used and this username
provided

DS_BasicAuthPass NO S3cr3t This option indicates that
HTTP Basic
Authentication should be

http://site/

Copyright © 2011 Rapid7 LLC | API Reference 76

used and this password
provided

DS_HTTPCookie NO SID=124324 This option can be used
to specify a cookie value
for form authentication

DS_UserAgent NO GoogleBot This option can be used
to override the
UserAgent of all requests
sent by the spider

A sample request to run exploits across a network range:

Client: ["pro.start_webscan", "<token>",

{

 "workspace" => "Project1",

 "DS_URLS" => "http://www.example.org/",

 "DS_MAX_PAGES" => 1000,

 "DS_MAX_MINUTES" => 5,

 "DS_MAX_THREADS" => 2

}

]

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 77

pro.start_webaudit Hash:Config)

The pro.start_webaudit method is what drives the WebAudit action within the Metasploit Pro user

interface. The pro.start_webaudit method takes a large number of options in the form of a single Hash

parameter and returns a Task ID that can be monitored using the Pro Task API. Keep in mind that the

WebAudit action requires one or more existing forms to have been identified by the WebScan action or

an import from another data source.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this
import should be part of.
This correlates to the full
name of the project as
listed in the user
interface.

username NO admin This option specifies
which Pro username this
task should be attributed
to. If not specified, the
first user with
administrative privileges
is used.

DS_URLS YES http://site/ This option specifies a list
of URLs (space
separated) to audit
where at least form has
been identified per URL.

DS_MAX_REQUESTS YES 1000 This options indicates the
maximum number of
requests that should be
sent to each unique form

DS_MAX_MINUTES YES 5 This option sets a
maximum audit time per
form

DS_MAX_THREADS YES 1 This option specifies the
number of concurrent
threads to spider with
per URL. Reasonable
values are between 1 and
5.

DS_MAX_INSTANCES YES 5 This option specifies the
maximum unique
instances of a given form

http://site/

Copyright © 2011 Rapid7 LLC | API Reference 78

that should be audited.
DS_BasicAuthUser NO Admin This option indicates that

HTTP Basic
Authentication should be
used and this username
provided

DS_BasicAuthPass NO S3cr3t This option indicates that
HTTP Basic
Authentication should be
used and this password
provided

DS_HTTPCookie NO SID=124324 This option can be used
to specify a cookie value
for form authentication

DS_UserAgent NO GoogleBot This option can be used
to override the
UserAgent of all requests
sent

A sample request to run exploits across a network range:

Client: ["pro.start_webaudit", "<token>",

{

 "workspace" => "Project1",

 "DS_URLS" => "http://www.example.org/login.aspx",

 "DS_MAX_REQUESTS" => 1000,

 "DS_MAX_MINUTES" => 2,

 "DS_MAX_THREADS" => 1,

 "DS_MAX_INSTANCES" => 10

}

]

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 79

pro.start_websploit Hash:Config)

The pro.start_websploit method is what drives the WebSploitt action within the Metasploit Pro user

interface. The pro.start_websploit method takes a large number of options in the form of a single Hash

parameter and returns a Task ID that can be monitored using the Pro Task API. Keep in mind that the

WebSploit action requires one or more existing vulnerabilities to have been identified by WebAudit or

imported from another data source.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this
import should be part of.
This correlates to the full
name of the project as
listed in the user
interface.

username NO admin This option specifies
which Pro username this
task should be attributed
to. If not specified, the
first user with
administrative privileges
is used.

DS_VULNERABILITIES YES 100,101,102 This option specifies a list
of vulnerability IDs to
attempt to exploit. These
IDs are created by
WebAudit and by
importing data. Each ID
refers to a unique
instance of a
vulnerability.

DS_EXPLOIT_TIMEOUT NO 5 This option sets the
maximum amount of
time any individual
exploit can run. Setting
this below 2 minutes can
prevent some exploits
from working.

DS_LimitSessions NO false This option determines
whether to attempt to
avoid exploiting systems

Copyright © 2011 Rapid7 LLC | API Reference 80

that already have an
active session. The
default is true.

DS_PAYLOAD_METHOD NO auto This option determines
what connection method
to use when opening
sessions, it can be one of
auto, reverse, or bind.

DS_PAYLOAD_TYPE NO meterpreter This option determines
whether to prefer
meterpreter or shell
session types.

DS_PAYLOAD_PORTS NO 4000-5000 This option specifies the
port range to use for bind
and reverse connections.

DS_BasicAuthUser NO Admin This option indicates that
HTTP Basic
Authentication should be
used and this username
provided

DS_BasicAuthPass NO S3cr3t This option indicates that
HTTP Basic
Authentication should be
used and this password
provided

DS_HTTPCookie NO SID=124324 This option can be used
to specify a cookie value
for form authentication

DS_UserAgent NO GoogleBot This option can be used
to override the
UserAgent of all requests
sent

A sample request to run exploits across a network range:

Client: ["pro.start_websploit", "<token>",

{

 "workspace" => "Project1",

 "DS_VULNERABILITIES" => "100 101 102",

}

]

Copyright © 2011 Rapid7 LLC | API Reference 81

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 82

pro.start_cleanup(Hash:Config)

The pro.start_cleanup method is what drives the Cleanup action within the Metasploit Pro user

interface. The pro.start_cleanup method takes a number of options in the form of a single Hash

parameter and returns a Task ID that can be monitored using the Pro Task API.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this
import should be part of.
This correlates to the full
name of the project as
listed in the user
interface.

username NO admin This option specifies
which Pro username this
task should be attributed
to. If not specified, the
first user with
administrative privileges
is used.

DS_SESSIONS YES 1 2 3 This option specifies a list
of session IDs to close.
These are RPC service
session IDs.

DS_DBSESSIONS NO 1001 1002 This option specifies a list
of session IDs by their
database identifiers.

A sample request to run exploits across a network range:

Client: ["pro.start_cleanup", "<token>",

{

 "workspace" => "Project1",

 "DS_SESSIONS" => "100 101 102",

}

]

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 83

pro.start_collect(Hash:Config)

The pro.start_collect method is what drives the Collect action within the Metasploit Pro user interface.

The pro.start_collect method takes a number of options in the form of a single Hash parameter and

returns a Task ID that can be monitored using the Pro Task API.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this
import should be part of.
This correlates to the full
name of the project as
listed in the user
interface.

username NO admin This option specifies
which Pro username this
task should be attributed
to. If not specified, the
first user with
administrative privileges
is used.

DS_SESSIONS YES 1 2 3 This option specifies a list
of session IDs to close.
These are RPC service
session IDs.

DS_COLLECT_SYSINFO YES true This option indicates
whether basic system
information should be
acquired

DS_COLLECT_PASSWD YES true This option indicates
whether password and
hashes should be
acquired

DS_COLLECT_SCREENSHOTS YES true This option indicates
whether screenshots
should be taken

DS_COLLECT_SSH YES true This option indicates
whether ssh key
information should be
acquired

DS_COLLECT_FILES YES false This option indicates
whether specific files
matching a pattern

Copyright © 2011 Rapid7 LLC | API Reference 84

should be acquired
DS_COLLECT_FILES_PATTERN NO *.doc This option sets the file

pattern to automatically
download

DS_COLLECT_FILES_COUNT NO 100 This option sets the
maximum number of
files to download per
session

DS_COLLECT_FILES_SIZE NO 40 This option sets the
maximum file size to
download per file, in
kilobytes

A sample request to run exploits across a network range:

Client: ["pro.start_collect", "<token>",

{

 "workspace" => "Project1",

 "DS_SESSIONS" => "100 101 102",

 "DS_COLLECT_SYSINFO" => true,

 "DS_COLLECT_PASSWD" => true,

 "DS_COLLECT_SCREENSHOTS" => true,

 "DS_COLLECT_SSH" => true,

 "DS_COLLECT_FILES" => false

}

]

The reply from a successful request contains the Task ID, as shown below:

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 85

pro.start_report(Hash:Config)

The pro.start_report method is what drives the Report and Export actions within the Metasploit Pro

user interface. The pro.start_report method takes a number of options in the form of a single Hash

parameter and returns a Task ID that can be monitored using the Pro Task API.

The individual options within the Config hash are defined in the table below.

Option Name Required Example Description

workspace YES Project1 This option indicates the
project name that this
import should be part of.
This correlates to the full
name of the project as
listed in the user
interface.

username NO admin This option specifies
which Pro username this
task should be attributed
to. If not specified, the
first user with
administrative privileges
is used.

DS_WHITELIST_HOSTS YES 192.168.0.0/24 This option specifies
what hosts from the
specified project should
be included. By default it
includes all hosts

DS_BLACKLIST_HOSTS NO 192.168.0.1 This option specifies
what hosts to exclude
from the generated
report

DS_MaskPasswords YES true This option indicates
whether to hide
passwords or not

DS_IncludeTaskLog YES true This option indicates
whether to include the
task logs in the ZIP report
format

DS_JasperDisplaySession YES true This option indicates
whether to include the
session history in the
report.

DS_DisplayCharts YES false This option indicates
whether to show charts
and graphs in the

Copyright © 2011 Rapid7 LLC | API Reference 86

generated report (if
applicable)

DS_LootExcludeScreenshots YES true This option indicates
whether to exclude
screenshots from
generated ZIP exports

DS_LootExcludePasswords YES true This option indicates
whether to exclude
passwords from
generated ZIP exports

DS_JasperTemplate YES msfxv3.jrxml This option specifies the
name of the report
template to use on the
server.

DS_REPORT_TYPE YES PDF This option is one of the
following values
(uppercase): XML, ZIP,
REPLAY, PWDUMP,
ACTIVITY-XML, ACTIVITY-
PDF, ACTIVITY-RTF, PCI-
PDF, PCI-RTF, PCI-XML,
FISMA-PDF, FISMA-RTF,
FISMA-XML

DS_UseJasper YES true This option indicates that
the Jasper engine should
be used (required for
most formats)

DS_UseCustomReport YES true This option must be set
to enable custom
reporting (always true for
RPC users)

DS_JasperProductName YES Metasploit Pro This option defines what
banner is shown in the
report cover page

DS_JasperDbEnv YES production This option specifies
what database to use, for
all RPC cases it should be
"production"

DS_JasperLogo YES Logo.png This option can specify
an image located in the
Pro asset directory to use
as the cover page logo.
Leave blank to use the
default logo.

DS_JasperDisplaySections YES 1,2,3,4,5,6,7,8 This option specifies a list
of sections to include in
the audit reports

DS_EnablePCIReport YES true This option must be set

Copyright © 2011 Rapid7 LLC | API Reference 87

to true in order to
generate PCI reports

DS_EnableFISMAReport YES true This option must be set
to true in order to
generate FISMA reports

DS_JasperDisplayWeb YES true This option must be set
to show web application
vulnerabilities in the
generated report

A sample request to run exploits across a network range:

Client: ["pro.start_report", "<token>",

{

 'DS_WHITELIST_HOSTS' => "",

 'DS_BLACKLIST_HOSTS' => "",

 'workspace' => "Project 1",

 'DS_MaskPasswords' => false,

 'DS_IncludeTaskLog' => false,

 'DS_JasperDisplaySession' => true,

 'DS_JasperDisplayCharts' => true,

 'DS_LootExcludeScreenshots' => false,

 'DS_LootExcludePasswords' => false,

 'DS_JasperTemplate' => "msfxv3.jrxml",

 'DS_REPORT_TYPE' => "PDF",

 'DS_UseJasper' => true,

 'DS_UseCustomReporting' => true,

 'DS_JasperProductName' => "Metasploit Pro",

 'DS_JasperDbEnv' => "production",

 'DS_JasperLogo' => '',

 'DS_JasperDisplaySections' => "1,2,3,4,5,6,7,8",

 'DS_EnablePCIReport' => true,

 'DS_EnableFISMAReport' => true,

 'DS_JasperDisplayWeb' => true

}

]

The reply from a successful request contains the Task ID, as shown below:

Copyright © 2011 Rapid7 LLC | API Reference 88

Server: { "task_id" => "109" }

Copyright © 2011 Rapid7 LLC | API Reference 89

Pro Import API

pro.import_data(String:Workspace, BinaryString:Data, Hash:Options)

The pro.import_data method starts a new import task with the supplied data.

Client: ["pro.import_data", "<token>", "Project1", "<DATA>",

{

 'blacklist_hosts' => '',

'preserve_hosts' => false

}

Server: { "task_id" => "109" }

pro.import_file(String:Workspace, String:Path, Hash:Options)

The pro.import_file method starts a new import task with the supplied server-local path.

Client: ["pro.import_file", "<token>", "Project1", "/home/data/report.xml",

{

 'blacklist_hosts' => '',

'preserve_hosts' => false

}

Server: { "task_id" => "109" }

pro.validate_import_file(String:Path)

The pro.validate_import_file method validates a file on disk to verify that it is a support data format.

This method is non-standard in that it only returns a true or false value.

Client: ["pro.import_file", "<token>", "Project1", "/home/data/report.xml",

{

 'blacklist_hosts' => '',

'preserve_hosts' => false

}

Server: true

Copyright © 2011 Rapid7 LLC | API Reference 90

Pro Loot API

pro.loot_download(Integer:LootID)

The pro.loot_download method downloads the file associated with loot record, by unique ID

Client: ["pro.loot_download", "<token>", 99]

Server: { "data" => "<BinaryData>" }

pro.loot_list(String:WorkspaceName)

The pro.loot_download method returns a list of available loot records in a workspace

Client: ["pro.loot_list", "<token>", "Project1"]

Server: {

 "900" => {

 'workspace' => "Project1",

 'host' => "1.2.3.4",

 'service' => 80,

 'proto' => 'tcp',

 'ltype' => 'screenshot',

 'ctype' => 'image/jpeg',

 'created_at' => <Unix Timestamp Integer>,

 'updated_at' => <Unix Timestamp Integer>,

 'name' => 'desktop.jpg',

 'info' => 'User desktop screenshot',

 'path' => '/opt/metasploit/loot/wspace_1_xxxxx.jpg',

 'size' => 40945

 }

}

Copyright © 2011 Rapid7 LLC | API Reference 91

Pro Module API

pro.module_search(String:SearchQuery)

The pro.module_search method scans the module database and returns any entries matching the

specified search query.

Client: ["pro.module_search", "<token>", "dcom"]

Server: { "matches"=>

 {"exploit/windows/dcerpc/ms03_026_dcom"=>

 {"type" => "exploit",

 "name" => "Microsoft RPC DCOM Interface Overflow",

 "rank" => 500,

 "description" => "Long description…",

 "license" => "Metasploit Framework License (BSD)",

 "filepath" => "[..]/windows/dcerpc/ms03_026_dcom.rb",

 "version" => "11545",

 "arch" => [],

 "platform" => [],

 "references" =>

 [["CVE", "2003-0352"],

 ["OSVDB", "2100"],

 ["MSB", "MS03-026"],

 ["BID", "8205"]],

 "authors" =>

 ["hdm <hdm[at]metasploit.com>",

 "spoonm <spoonm@no$email.com>",

 "cazz <bmc[at]shmoo.com>"],

 "privileged" => true,

 "disclosure_date" => 1058313600,

 "targets" => {0=>"Windows NT SP3-6a/2000/XP/2003 Universal"},

 "default_target" =>"0",

 "stance" => "aggressive"}, …

}

Copyright © 2011 Rapid7 LLC | API Reference 92

pro.module_validate(String:ModuleName, Hash:ModuleOptions)

The pro.module_validate method is used to determine whether a set of options satisfies the

requirements of a given module.

Client: ["pro.module_validate", "<token>",

 "exploit/windows/smb/psexec", {

"RHOST" => "1.2.3.4"

 }

]

Server: { "result" => "success" }

Invalid options would result in the following:

Server: {

"result" => "failure",

"error" => "The following options failed to validate: RHOST."

}

pro.modules(String:ModuleType)

The pro.modules method returns the full set of modules for a given type

Client: ["pro.modules", "<token>", "post"]

Server: {"modules" =>

 { "post/linux/gather/checkvm" =>

 {"type" => "post",

 "name" => "Linux Gather Virtual Environment Detection",

 "rank" => 300,

 "description" => "Long description…",

 "license" => "Metasploit Framework License (BSD)",

 "filepath" => "[…]post/linux/gather/checkvm.rb",

 "version" => "13173",

 "arch" => [],

 "platform" => ["Msf::Module::Platform::Linux"],

Copyright © 2011 Rapid7 LLC | API Reference 93

 "references" => [],

 "authors" => ["Carlos Perez <carlos_perez[at]darkoperator.com>"],

 "privileged" => false}, …

}

Copyright © 2011 Rapid7 LLC | API Reference 94

Pro Report API

pro.report_download(report_id)

pro.report_download_by_task(task_id)

pro.report_list(String:WorkspaceName)

Pro Meterpreter API

pro.meterpreter_chdir(sid, path)

pro.meterpreter_getcwd(sid)

pro.meterpreter_list(sid, path)

pro.meterpreter_rm(sid, path)

pro.meterpreter_root_paths(sid)

pro.meterpreter_search(sid, query)

pro.meterpreter_tunnel_interfaces(sid)

